differential migration
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 134 (21) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Bram van Steen and Lanette Kempers are co-first authors on ‘ Transendothelial migration induces differential migration dynamics of leukocytes in tissue matrix’, published in JCS. Bram is a PhD student in the laboratory of Jaap van Buul at Sanquin Research, Amsterdam, The Netherlands, investigating the secrets of cell behavior and migration using advanced models and microscopy. Lanette is a PhD student in the same lab studying the process of sprouting and angiogenesis using various microscopy approaches.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1378
Author(s):  
Philipp Rossbach ◽  
Hans-Joachim Böhme ◽  
Steffen Lange ◽  
Anja Voss-Böhme

The process of cell-sorting is essential for development and maintenance of tissues. Mathematical modeling can provide the means to analyze the consequences of different hypotheses about the underlying mechanisms. With the Differential Adhesion Hypothesis, Steinberg proposed that cell-sorting is determined by quantitative differences in cell-type-specific intercellular adhesion strengths. An implementation of the Differential Adhesion Hypothesis is the Differential Migration Model by Voss-Böhme and Deutsch. There, an effective adhesion parameter was derived analytically for systems with two cell types, which predicts the asymptotic sorting pattern. However, the existence and form of such a parameter for more than two cell types is unclear. Here, we generalize analytically the concept of an effective adhesion parameter to three and more cell types and demonstrate its existence numerically for three cell types based on in silico time-series data that is produced by a cellular-automaton implementation of the Differential Migration Model. Additionally, we classify the segregation behavior using statistical learning methods and show that the estimated effective adhesion parameter for three cell types matches our analytical prediction. Finally, we demonstrate that the effective adhesion parameter can resolve a recent dispute about the impact of interfacial adhesion, cortical tension and heterotypic repulsion on cell segregation.


Author(s):  
Lukas Jenni

AbstractThe Brambling Fringilla montifringilla combines several special features of migration and wintering: differential migration according to age and sex groups, large differences in winter densities as a response to food availability, and flocking behaviour as a response to local mass fructification of the beech Fagus sp. resulting in roosts of several million birds. This study examines (a) whether Bramblings participating in mass concentrations originate from different, or additional, breeding grounds compared with birds present in normal winters, and (b) how differential migration according to age and sex groups combines with irruptive migration and with congregations in mass roosts, i.e., whether the benefits from mass concentrations differ between age and sex groups. Wing biometry (wing length, lengths of outer primaries, and wing pointedness) did not vary geographically, as shown by museum skins, and was therefore not helpful to reveal differences in origin between birds of mass concentrations and normal winters. The extent of the post-juvenile moult was smaller in mass concentration birds and suggests that slightly later-born juveniles, i.e., born further east or north, participate in mass concentrations. Ringing recoveries could not demonstrate a difference in breeding range origin of Bramblings which participate in mass concentrations versus Bramblings in normal winters in Switzerland. However, this may be due to insufficient recoveries of ringed birds. A rough estimate suggests that the number of Bramblings migrating SW on a broad front across Europe could be sufficient to form mass concentrations of up to 10 million birds which are halted by a large area of beech mast. Across Europe, the proportion of juvenile males decreased towards south (i.e., with increasing migration distance) in autumn migrants and wintering birds, while adult females showed the opposite pattern, and adult males and juvenile females were intermediate. Mass concentrations in Switzerland were composed of significantly more adults, especially adult males, and fewer juveniles, particularly juvenile females, while the sex–age composition outside mass concentrations was similar to normal winters. Adults and females likely benefit from wintering further south where snow is less likely to cover food of this ground-feeding finch. On the other hand, the costs of migration are probably substantial in terms of direct costs or indirectly in terms of reaching the breeding grounds, so that juvenile males prefer to winter closer to the breeding area than adults. Feeding in large flocks in beech mast areas incurs the high risk of being cut off from this food by snowfall. Adult males are apparently best adapted to this risk, and hence predominate in mass concentrations.


2021 ◽  
Vol 8 (1) ◽  
pp. 1-18
Author(s):  
Thomas P. Quinn

AbstractMigrations affect the population dynamics, life history, evolution, and connections of animals to natural ecosystems and humans. Many species and populations display partial migration (some individuals migrate and some do not), and differential migration (migration distance varies). Partial migration is widely distributed in fishes but the term differential migration is much less commonly applied, despite the occurrence of this phenomenon. This paper briefly reviews the extent of differential migration in Pacific salmon and trout (genus Oncorhynchus), a very extensively studied group. Three hypotheses are presented to explain the patterns among species: 1) phylogenetic relationships, 2) the prevalence of partial migration (i.e., variation in anadromy), and 3) life history patterns (iteroparous or semelparous, and duration spent feeding at sea prior to maturation). Each hypothesis has some support but none is consistent with all patterns. The prevalence of differential migration, ranging from essentially non-existent to common within a species, reflects phylogeny and life history, interacting with the geographic features of the region where juvenile salmon enter the ocean. Notwithstanding the uncertain evolution of this behavior, it has very clear implications for salmon conservation, as it strongly affects exposure to predators, patterns of fishery exploitation and also uptake of toxic contaminants.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Jonas Wobker ◽  
Wieland Heim ◽  
Heiko Schmaljohann

Abstract Sex- and age-specific differences in the timing of migration are widespread among animals. In birds, common patterns are protandry, the earlier arrival of males in spring, and age-differential migration during autumn. However, knowledge of these differences stems mainly from the Palearctic-African and Nearctic-Neotropical flyways, while detailed information about the phenology of migrant birds from the East Asian flyway is far scarcer. To help fill parts of this gap, we analyzed how migration distance, sex, age, and molt strategy affect the spring and autumn phenologies of 36 migrant songbirds (altogether 18,427 individuals) at a stopover site in the Russian Far East. Sex-differential migration was more pronounced in spring than in autumn, with half of the studied species (6 out of 12) showing a protandrous migration pattern. Age-differences in migration were rare in spring but found in nearly half of the studied species (11 out of 25) in autumn. These age effects were associated with the birds’ molt strategy and the mean latitudinal distances from the assumed breeding area to the study site. Adults performing a complete molt before the onset of autumn migration passed the study site later than first-year birds undergoing only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. These sex-, age-, and molt-specific migration patterns agree with those found along other flyways and seem to be common features of land bird migration strategies. Significance statement The timing of animal migration is shaped by the availability of resources and the organization of annual cycles. In migrant birds, sex- and age-differential migration is a common phenomenon. For the rarely studied East Asian flyway, we show for the first time and based on a large set of migrant songbirds that earlier migration of males is a common pattern there in spring. Further, the timing and extent of molt explained age-differential migration during autumn. Adults molting their complete plumage at the breeding area before migration showed delayed phenology in comparison to first-year birds, which perform only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. Since our results agree with the general patterns from the other migration flyways, similar drivers for differential migration may act across different flyway systems, provoking a similar evolutionary response.


FEDS Notes ◽  
2020 ◽  
Vol 2020 (2802) ◽  
Author(s):  
Eva de Francisco ◽  
◽  
Joaquin Garcia-Cabo ◽  
Tyler Powell ◽  
◽  
...  

This note takes a novel approach to study the question of whether housing ownership has negative effects on workers' mobility. While most of the literature has focused on studying differential migration rates between owners and renters, commonly known as "house-lock", we analyze this question from the perspective of differences in earnings.


2020 ◽  
Author(s):  
André Rosa ◽  
Wolfgang Giese ◽  
Katja Meier ◽  
Silvanus Alt ◽  
Alexandra Klaus-Bergmann ◽  
...  

AbstractEndothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are coordinated remains unknown. Here, using the zebrafish trunk vasculature we show that in future veins endothelial cells proliferate more than in future arteries and migrate preferentially towards neighboring arteries. In future arteries endothelial cells show a biphasic migration profile. During sprouting cells move away from the dorsal aorta, during remodelling cells stop or move towards the feeding aorta. The final morphology of blood vessels is thus established by local proliferation and oriented cell migration to and from neighboring vessels. Additionally, we identify WASp to be essential for this differential migration. Loss of WASp leads to irregular distribution of endothelial cells, substantially enlarged veins and persistent arteriovenous shunting. Mechanistically, we report that WASp drives the assembly of junctional associated actin filaments and is required for junctional expression of PECAM-1. Together, our data identify that functional vascular patterning in the zebrafish trunk utilizes differential cell movement regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233103 ◽  
Author(s):  
David H. Secor ◽  
Michael H. P. O’Brien ◽  
Benjamin I. Gahagan ◽  
J. Carter Watterson ◽  
Dewayne A. Fox

2020 ◽  
Author(s):  
Marian Holness ◽  
Victoria Honour ◽  
Gautier Nicoli

<p>The liquid line of descent of the Skaergaard magma intersects a binodal creating an immiscible conjugate pair comprising a dense Fe-rich liquid and a buoyant Si-rich liquid. These two liquids have different wetting properties: the Si-rich liquid wets plagioclase, whereas the Fe-rich liquid wets oxides, pyroxene and olivine. The two liquids may therefore undergo differential migration within a gabbroic crystal mush: the Fe-rich liquid sinks and accumulates in mafic layers, while the Si-rich liquid rises and accumulates in plagioclase-rich regions.</p><p>Field-scale evidence of metre-scale differential migration of unmixed immiscible interstitial liquids is provided by paired felsic and mafic lenses spatially associated with gabbroic pegmatite bodies in the Skaergaard floor cumulates. These represent small batches of late-stage liquids rising from the pegmatite bodies into the overlying mush, and their subsequent separation into immiscible conjugates. The paired lenses form irregular, approximately layer-parallel clusters in thick mush, but thin concordant dendritic structures within strongly foliated thin mush. Invariably the melanocratic component lies stratigraphically below the felsic component.</p><p>Differential migration within the floor cumulates is also recorded by mm-scale mafic and felsic rims developed on the top and bottom margins of anorthositic blocks derived from the roof. Highly tabular blocks have an upper mafic rim and a lower leucocratic rim. As the block aspect ratio decreases, the rims disappear, with the mafic rim retained at lower aspect ratios than the leucocratic rim. We interpret rim formation as a consequence of trapping migrating unmixed interstitial liquid against the relatively impermeable blocks: tabular blocks are most effective at trapping these liquids.</p><p>On a smaller scale, the different wetting properties of the two immiscible conjugates result in post-accumulation pattern formation in rapidly deposited modally graded layers, imposing cm-scale internal layering on the overall modal grading. The tops of the modally-graded layers may also develop felsic flame-like structures interpreted as a consequence of upwards-migration of the immiscible Si-rich conjugate from high-porosity rapidly deposited layers into the overlying cumulates.</p><p>These observations demonstrate the complexity of behaviour in a crystal mush containing a two-phase interstitial liquid. Understanding cumulate evolution necessitates a consideration of the scale of migration of interstitial liquid and the possibility of the differential loss of one of the two conjugates.</p>


Sign in / Sign up

Export Citation Format

Share Document