scholarly journals Endocrine therapy resistance can be associated with high estrogen receptor α (ERα) expression and reduced ERα phosphorylation in breast cancer models

2006 ◽  
Vol 13 (4) ◽  
pp. 1121-1133 ◽  
Author(s):  
Barbara Kuske ◽  
Catherine Naughton ◽  
Kate Moore ◽  
Kenneth G MacLeod ◽  
William R Miller ◽  
...  

Hormone-dependent estrogen receptor (ER)-positive breast cancer cells may adapt to low estrogen environments such as produced by aromatase inhibitors. In many instances, cells become insensitive to the effects of estrogen but may still retain dependence on ER. We have investigated the expression, function, and activation of ERα in two endocrine-resistant MCF-7 models to identify mechanisms that could contribute to resistance. While MCF-7/LCC1 cells are partially estrogen dependent, MCF-7/LCC9 cells are fully estrogen insensitive and fulvestrant and tamoxifen resistant. In both MCF-7/LCC1 and MCF-7/LCC9 cell lines, high expression of ERα was associated with enhanced binding to the trefoil factor 1 (TFF1) promoter in the absence of estrogen and increased transcription of TFF1 and progesterone receptor. In contrast to the observations derived from hypersensitive and supersensitive models, these cells were truly estrogen independent; nevertheless, removal of ERα by siRNA, or fulvestrant, a specific ER downregulator, inhibited growth indicating dependence on ERα. In the absence of estrogen, neither ERα Ser118 nor Ser167 were phosphorylated as frequently found in other ligand-independent cell line models. Addition of estrogen activated ERα Ser118 in MCF-7 and LCC1 cells but not in LCC9 cells. We suggest that the estrogen-independent growth within these cell lines is accounted for by high levels of ERα expression driving transcription and full estrogen independence explained by lack of ERα activation through Ser118.

Author(s):  
Xiaoqing Wan ◽  
Jiaxin Hou ◽  
Shurong Liu ◽  
Yanli Zhang ◽  
Wenqing Li ◽  
...  

Anthracyclines resistance is commonly seen in patients with estrogen receptor α (ERα) positive breast cancer. Epithelial-mesenchymal transition (EMT), which is characterized with the loss of epithelial cell polarity, cell adhesion and acquisition of new invasive property, is considered as one of the mechanisms of chemotherapy-induced drug resistance. In order to identify factors that associated with doxorubicin resistance, we performed in vitro and in vivo experiments using human and mouse breast cancer cell lines with different ERα status. Cell survival experiments revealed that ERα-positive cells (MCF-7 and MCF-7/ADR cell lines), were less sensitive to doxorubicin than ERα-negative (MDA-MB-231, MDA-MB-468) cells, and mouse mammary carcinoma cells (4T-1). The expression of E-cadherin reduced in low-invasive ERα-positive MCF-7 cells after treatment with doxorubicin, indicating epithelial mesenchymal transition. In contrast, the expression of E-cadherin was upregulated in high-invasive ERα-negative cells, showing mesenchymal-epithelial transition (MET). Moreover, it was found that the growth inhibition of 4T-1 cells by doxorubicin was positively correlated with the expression of E-cadherin. In a mouse breast cancer xenograft model, E-cadherin was overexpressed in the primary tumor tissues of the doxorubicin-treated mice. In ERα-positive MCF-7 cells, doxorubicin treatment upregulated the expression of EMT-related transcription factors Snail and Twist, that regulate the expression of E-cadherin. Following overexpression of ERα in ERα-negative cells (MDA-MB-231 and MDA-MB-468), doxorubicin enhanced the upregulation of Snail and Twist, decreased expression of E-cadherin, and decreased the sensitivity of cells to doxorubicin. In contrast, inhibition of ERα activity increased the sensitivity to doxorubicin in ERα-positive MCF-7 cells. These data suggest that the regulation of Snail and/or Twist varies depends on different ERα status. Therefore, doxorubicin combined with anti-estrogen receptor α therapy could improve the treatment efficacy of doxorubicin in ERα-positive breast cancer.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 623
Author(s):  
Marit Rasmussen ◽  
Susanna Tan ◽  
Venkata S. Somisetty ◽  
David Hutin ◽  
Ninni Elise Olafsen ◽  
...  

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17β-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17β-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor’s ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.


2021 ◽  
Vol 28 (5) ◽  
pp. 4080-4092
Author(s):  
Takahiro Ichikawa ◽  
Masahiro Shibata ◽  
Takahiro Inaishi ◽  
Ikumi Soeda ◽  
Mitsuro Kanda ◽  
...  

Background: Accumulating evidence indicates tumor-promoting roles of synaptotagmin 13 (SYT13) in several cancers; however, no studies have investigated its expression in breast cancer (BC). This study aimed to clarify the significance of SYT13 in BC. Methods: SYT13 mRNA expression levels were evaluated in BC cell lines. Polymerase chain reaction (PCR) array analysis was conducted to determine the correlation between expression levels of SYT13 and other tumor-associated genes. Then, the association of SYT13 expression levels in the clinical BC specimens with patients’ clinicopathological factors was evaluated. These findings were subsequently validated using The Cancer Genome Atlas (TCGA) database. Results: Among 13 BC cell lines, estrogen receptor (ER)-positive cells showed higher SYT13 mRNA levels than ER-negative cells. PCR array analysis revealed positive correlations between SYT13 and several oncogenes predominantly expressed in ER-positive BC, such as estrogen receptor 1, AKT serine/threonine kinase 1, and cyclin-dependent kinases 4. In 165 patients, ER-positive specimens exhibited higher SYT13 mRNA expression levels than ER-negative specimens. The TCGA database analysis confirmed that patients with ER-positive BC expressed higher SYT13 levels than ER-negative patients. Conclusion: This study suggests that SYT13 is highly expressed in ER-positive BC cells and clinical specimens, and there is a positive association of SYT13 with the ER signaling pathways.


2018 ◽  
Vol 66 (10) ◽  
pp. 709-721 ◽  
Author(s):  
Hui Liu ◽  
Zhantao Yan ◽  
Qianqian Yin ◽  
Kai Cao ◽  
Yu Wei ◽  
...  

The role of Runt-related transcription factor 3 ( RUNX3) gene in breast cancer remains not fully understood. We studied the correlation between RUNX3 gene promoter methylation and estrogen receptor (ER) expression status in breast cancer. Three breast cancer cell lines and 113 formalin-fixed, paraffin-embedded breast cancer tissue samples were analyzed for RUNX3 expression. Methylation-specific polymerase chain reaction was used to analyze RUNX3 methylation on the samples. Migration and invasion ability were evaluated in MCF7 cell line (RUNX3 methylated) treated with methylation inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR) to study the effect of RUNX3 methylation status. Our data showed that the expression of RUNX3 was high in MCF10A but not in MCF7 and SKBR3 cell lines, while the RUNX3 promoter showed hypermethylation in MCF7 but not in MCF10A and SKBR3. In tissues samples, Immunohistochemical (IHC) expression of RUNX3 protein was higher in ER-negative samples than in ER-positive cases, and it was negatively correlated with the methylation status of the RUNX3 gene promoter. Proliferation, migration, and invasion of MCF7 were suppressed when 5-Aza-CdR treated. Also, the hypermethylation status of RUNX3 gene promoter was reversed and RUNX3 expression was increased. In summary, our data suggest that hypermethylation of the RUNX3 gene promoter may play an important role in ER-positive breast tumor progression.


Sign in / Sign up

Export Citation Format

Share Document