scholarly journals Differential impact of adipokines derived from primary adipocytes of wild-type versus streptozotocin-induced diabetic rats on glucose and fatty acid metabolism in cardiomyocytes

2009 ◽  
Vol 200 (2) ◽  
pp. 241
Author(s):  
Rengasamy Palanivel ◽  
Vivian Vu ◽  
Min Park ◽  
Xiangping Fang ◽  
Gary Sweeney
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hongyan Ren ◽  
Wei Xiao ◽  
Xingliang Qin ◽  
Gangzhi Cai ◽  
Hao Chen ◽  
...  

Abstract Myostatin (MSTN), associated with the “double muscling” phenotype, affects muscle growth and fat deposition in animals, whereas how MSTN affects adipogenesis remains to be discovered. Here we show that MSTN can act through the MEF2C/miR222/SCD5 cascade to regulate fatty acid metabolism. We generated MSTN-knockout (KO) cloned Meishan pigs, which exhibits typical double muscling trait. We then sequenced transcriptome of subcutaneous fat tissues of wild-type (WT) and MSTN-KO pigs, and intersected the differentially expressed mRNAs and miRNAs to predict that stearoyl-CoA desaturase 5 (SCD5) is targeted by miR222. Transcription factor binding prediction showed that myogenic transcription factor 2C (MEF2C) potentially binds to the miR222 promoter. We hypothesized that MSTN-KO upregulates MEF2C and consequently increases the miR222 expression, which in turn targets SCD5 to suppress its translation. Biochemical, molecular and cellular experiments verified the existence of the cascade. This novel molecular pathway sheds light on new targets for genetic improvements in pigs.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78477 ◽  
Author(s):  
Sriram Devanathan ◽  
Samuel T. Nemanich ◽  
Attila Kovacs ◽  
Nicole Fettig ◽  
Robert J. Gropler ◽  
...  

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Kengo Azushima ◽  
Jean Paul Kovalik ◽  
Jianhong Ching ◽  
Susan B Gurley ◽  
Thomas M Coffman

Activation of the renin-angiotensin system (RAS) is a major contributor to the pathogenesis of diabetic nephroathy (DN). However, the precise mechanisms of renoprotection associated with RAS blockade in DN are not entirely clear. The aim of this study is to examine whether metabolic effects of RAS blockade might contribute to renoprotection. We utilized a mouse model of DN combining severe type I diabetes (the Akita mutation) with a single-copy renin transgene (ReninTG) driven by the albumin promoter. Akita-ReninTG mice on a 129/Sv background (DN-susceptible mice) develop clinical features of human DN including high-grade albuminuria, renal interstitial inflammation and glomerulosclerosis, while Akita-ReninTG mice on a C57BL/6 background (DN-resistant mice) do not develop significant kidney disease. These two experimental groups were treated with the angiotensin receptor blocker (ARB) losartan 10 mg/kg/day for 12 weeks, and metabolic profiles in kidney tissues were examined using a targeted metabolomics assay. The DN-susceptible mice exhibited high-grade albuminuria that was significantly attenuated by ARB (Vehicle vs ARB: 1480±562 vs 193±42 μg/day, p =0.045), while DN-resistant mice had minimal albuminuria that was not affected by ARB (Vehicle vs ARB: 80±14 vs 75±14 μg/day, p =0.801). The metabolomics profiles of the DN-resistant mice were similar to C57BL/6 wild-type controls. By contrast, DN-susceptible mice exhibited broad reductions in even-chain acyl-carnitines and an abnormal profile of TCA cycle intermediates compared to 129/Sv wild-type controls, suggesting substantial impairments of renal mitochondrial fuel oxidation including altered fatty acid metabolism. RAS blockade had broad effects to correct this profile by increasing acetyl-carnitines generated from acetyl-CoA and concomitantly normalizing expression of genes associated with mitochondrial fatty acid metabolism including PPAR-α, PGC-1α, CPT1 and CPT2. ARB treatment restored TCA cycle activity to normal. These findings suggest that effects of RAS blockade re-establish normal fuel metabolism and mitochondrial fatty acid oxidation in kidney and may contribute to renoprotection.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 372
Author(s):  
Daiki Aomura ◽  
Makoto Harada ◽  
Yosuke Yamada ◽  
Takero Nakajima ◽  
Koji Hashimoto ◽  
...  

As classical agonists for peroxisomal proliferator-activated receptor alpha (PPARα), fibrates activate renal fatty acid metabolism (FAM) and provide renoprotection. However, fibrate prescription is limited in patients with kidney disease, since impaired urinary excretion of the drug causes serious adverse effects. Pemafibrate (PEM), a novel selective PPARα modulator, is mainly excreted in bile, and, thus, may be safe and effective in kidney disease patients. It remains unclear, however, whether PEM actually exhibits renoprotective properties. We investigated this issue using mice with fatty acid overload nephropathy (FAON). PEM (0.5 mg/kg body weight/day) or a vehicle was administered for 20 days to 13-week-old wild-type male mice, which were simultaneously injected with free fatty acid (FFA)-binding bovine serum albumin from day 7 to day 20 to induce FAON. All mice were sacrificed on day 20 for assessment of the renoprotective effect of PEM against FAON. PEM significantly attenuated the histological findings of tubular injury caused by FAON, increased the renal expressions of mRNA and proteins related to FAM, and decreased renal FFA content and oxidative stress. Taken together, PEM exhibits renoprotective effects through the activation and maintenance of renal FAM and represents a promising drug for kidney disease.


2005 ◽  
Vol 387 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Naomi van VLIES ◽  
Liqun TIAN ◽  
Henk OVERMARS ◽  
Albert H. BOOTSMA ◽  
Willem KULIK ◽  
...  

In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD−/− (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD−/− mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial β-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD−/− tissues, indicating that, in this situation, the β-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD−/− hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD−/− mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse.


1994 ◽  
Vol 304 (1) ◽  
pp. 177-182 ◽  
Author(s):  
A M B Moir ◽  
V A Zammit

1. The hypothesis that insulin treatment of streptozotocin-diabetic rats does not alter acutely the ability of acylcarnitine synthesis to compete successfully for cytosolic long-chain acyl-CoA [Grantham and Zammit (1988) Biochem. J. 249, 409-414], was tested in vivo by using the technique of selective labelling of hepatic fatty acids in awake unrestrained rats. In the same animals, the partitioning of hepatic fatty acids between acylglycerol and phospholipid synthesis, and of newly labelled triacylglycerol between secretion into the plasma and retention in the liver, was also studied. 2. In untreated diabetic animals, the ratio of fatty acid oxidation to esterification was double that found in normal fed animals, whereas there were no differences in the values of the above-mentioned parameters of glycerolipid metabolism. Thus the insulin status of the rats only has chronic effects on specific aspects of fatty acid metabolism in the liver. 3. Treatment of diabetic rats with insulin resulted in no change in the oxidation/esterification ratio for the first 5 h after the start of insulin administration. Thereafter, there were reciprocal changes in the 14CO2 expired (an index of oxidation) and 14C label recovered in hepatic and plasma glycerolipids. However, the pattern of partitioning observed in normal fed rats was still not re-established after 8 h of insulin treatment. 4. There was a small and transient decrease in the fractional rate of triacylglycerol secretion by the liver at the start of insulin treatment and an increase in the proportion of labelled fatty acid that was utilized for phospholipid synthesis such that phospholipid labelling as a proportion of that of total glycerolipids was doubled after 8 h of insulin treatment. 5. The data are discussed in relation to the roles of insulin in mediating acute changes in hepatic fatty acid metabolism and very-low-density-lipoprotein triacylglycerol secretion by the liver.


2001 ◽  
Vol 281 (5) ◽  
pp. E975-E982 ◽  
Author(s):  
Véronic Bézaire ◽  
Wolfgang Hofmann ◽  
John K. G. Kramer ◽  
Leslie P. Kozak ◽  
Mary-Ellen Harper

Uncoupling protein-3 (UCP3) is a mitochondrial carrier protein of as yet undefined physiological function. To elucidate characteristics of its function, we studied the effects of fasting on resting metabolic rate, respiratory quotient, muscle Ucp3expression, and mitochondrial proton leak in wild-type and Ucp3(−/−) mice. Also analyzed were the fatty acid compositions of skeletal muscle mitochondria in fed and fasted Ucp3(−/−) and wild-type mice. In wild-type mice, fasting caused significant increases in Ucp3 (4-fold) and Ucp2 (2-fold) mRNA but did not significantly affect mitochondrial proton leak. State 4 oxygen consumption was not affected by fasting in either of the two groups. However, protonmotive force was consistently higher in mitochondria of Ucp3(−/−) animals ( P = 0.03), and fasting further augmented protonmotive force in Ucp3(−/−) mice; there was no effect in wild-type mitochondria. Resting metabolic rates decreased with fasting in both groups. Ucp3(−/−) mice had higher respiratory quotients than wild-type mice in fed resting states, indicating impaired fatty acid oxidation. Altogether, results show that the fasting-induced increases in Ucp2 and Ucp3 do not correlate with increased mitochondrial proton leak but support a role for UCP3 in fatty acid metabolism.


2008 ◽  
Vol 190 (23) ◽  
pp. 7633-7644 ◽  
Author(s):  
Roslyn N. Brown ◽  
Paul A. Gulig

ABSTRACT The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the ΔfadR mutation was complemented in trans with the wild-type gene. Further characterization of the ΔfadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the ΔfadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.


Sign in / Sign up

Export Citation Format

Share Document