scholarly journals A selective small molecule glucagon-like peptide-1 secretagogue acting via depolarization-coupled Ca2+ influx

2009 ◽  
Vol 201 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Jun-ichi Eiki ◽  
Kaori Saeki ◽  
Norihiro Nagano ◽  
Tomoharu Iino ◽  
Mari Yonemoto ◽  
...  

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that potentiates insulin secretion in a glucose-dependent manner. Selective GLP-1 secretagogue would be one of the potential therapeutic targets for type 2 diabetes. Here, we describe a newly identified small molecule compound (compound A) that stimulates secretion of GLP-1 in murine enteroendocrine cell lines, STC-1 and GLUTag cells, and in primary cultured fetal rat intestinal cells (FRIC). The underlying mechanism by which compound A stimulated GLP-1 secretion was also examined. Compound A stimulated GLP-1 secretion from STC-1 cells in a concentration-dependent manner, and also from GLUTag cells and FRIC. The action of compound A was selective against other tested endocrine functions such as secretion of insulin from rat islets, growth hormone from rat pituitary gland cells, and norepinephrine from rat PC-12 cells. In STC-1 cells, the compound A-stimulated GLP-1 secretion was neither due to cyclic AMP production nor to Ca2+ release from intracellular stores, but to extracellular Ca2+ influx. The response was inhibited by the presence of either L-type Ca2+ channel blockers or K+ ionophore. Perforated-patch clamp study revealed that compound A induces membrane depolarization. These results suggest that neither Gαs- nor Gαq-coupled signaling account for the mechanism of action, but depolarization-coupled Ca2+ influx from extracellular space is the primary cause for the GLP-1 secretion stimulated by compound A. Identifying a specific target molecule for compound A will reveal a selective regulatory pathway that leads to depolarization-mediated GLP-1 secretion.

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Zilong Li ◽  
Baoyu Chen ◽  
Wenhui Dong ◽  
Ming Kong ◽  
Zhiwen Fan ◽  
...  

AbstractExcessive fibrogenic response in the liver disrupts normal hepatic anatomy and function heralding such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. Sinusoidal endothelial cells contribute to myofibroblast activation and liver fibrosis by undergoing endothelial-mesenchymal transition (EndMT). The underlying mechanism remains poorly defined. Here we report that inhibition or endothelial-specific deletion of MKL1, a transcriptional modulator, attenuated liver fibrosis in mice. MKL1 inhibition or deletion suppressed EndMT induced by TGF-β. Mechanistically, MKL1 was recruited to the promoter region of TWIST1, a master regulator of EndMT, and activated TWIST1 transcription in a STAT3-dependent manner. A small-molecule STAT3 inhibitor (C188-9) alleviated EndMT in cultured cells and bile duct ligation (BDL) induced liver fibrosis in mice. Finally, direct inhibition of TWIST1 by a small-molecule compound harmine was paralleled by blockade of EndMT in cultured cells and liver fibrosis in mice. In conclusion, our data unveil a novel mechanism underlying EndMT and liver fibrosis and highlight the possibility of targeting the STAT3-MKL1-TWIST1 axis in the intervention of aberrant liver fibrogenesis.


2011 ◽  
Vol 286 (18) ◽  
pp. 15895-15907 ◽  
Author(s):  
Laurence J. Miller ◽  
Quan Chen ◽  
Polo C.-H. Lam ◽  
Delia I. Pinon ◽  
Patrick M. Sexton ◽  
...  

The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7–36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu141 above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp297 within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.


2006 ◽  
Vol 190 (3) ◽  
pp. 889-896 ◽  
Author(s):  
Neville H McClenaghan ◽  
Peter R Flatt ◽  
Andrew J Ball

This study examined the effects of glucagon-like peptide-1 (GLP-1) on insulin secretion alone and in combination with sulphonylureas or nateglinide, with particular attention to KATP channel-independent insulin secretion. In depolarised cells, GLP-1 significantly augmented glucose-induced KATP channel-independent insulin secretion in a glucose concentration-dependent manner. GLP-1 similarly augmented the KATP channel-independent insulin-releasing effects of tolbutamide, glibenclamide or nateglinide. Downregulation of protein kinase A (PKA)- or protein kinase C (PKC)-signalling pathways in culture revealed that the KATP channel-independent effects of sulphonylureas or nateglinide were critically dependent upon intact PKA and PKC signalling. In contrast, GLP-1 exhibited a reduced but still significant insulin-releasing effect following PKA and PKC downregulation, indicating that GLP-1 can modulate KATP channel-independent insulin secretion by protein kinase-dependent and -independent mechanisms. The synergistic insulin-releasing effects of combinatorial GLP-1 and sulphonylurea/nateglinide were lost following PKA- or PKC-desensitisation, despite GLP-1 retaining an insulin-releasing effect, demonstrating that GLP-1 can induce insulin release under conditions where sulphonylureas and nateglinide are no longer effective. Our results provide new insights into the mechanisms of action of GLP-1, and further highlight the promise of GLP-1 or similarly acting analogues alone or in combination with sulphonylureas or meglitinide drugs in type 2 diabetes therapy.


1993 ◽  
Vol 10 (3) ◽  
pp. 259-268 ◽  
Author(s):  
B Gallwitz ◽  
M Witt ◽  
U R Fölsch ◽  
W Creutzfeldt ◽  
W E Schmidt

ABSTRACT Glucagon-like peptide-1(7–36)amide (GLP-1(7–36) amide) and gastric inhibitory polypeptide (GIP), peptides of the glucagon family, stimulate insulin secretion in vitro and in vivo. They possess high N-terminal sequence homology. Binding studies with 125I-labelled GIP and 125I-labelled GLP-1(7– 36)amide were performed in RINm5F insulinoma cells to investigate receptor specificity and to compare both receptors directly. Both binding sites were highly ligand-specific: GIP did not bind to the GLP-1(7–36)amide receptor and vice versa. Both peptides increased intracellular cyclic AMP levels; GLP-1(7– 36)amide was 100-fold more potent in stimulating cyclic AMP production when compared with GIP. At ranges of 1–10 nmol GLP-1(7–36)amide/1 and 0·1–10 GIP/1, corresponding to submaximal binding concentrations, the hormones showed an additive effect on cyclic AMP production. The N-terminal portion of GIP was important for binding, as GIP(1–30) showed almost full binding and biological activity. GIP(17–42) bound in a concentration-dependent manner with approximately 500-fold lower potency than GIP. At concentrations of up to 10 μmol GIP(17–42)/1 no stimulation of cyclic AMP was observed.


1988 ◽  
Vol 116 (3) ◽  
pp. 357-362 ◽  
Author(s):  
R. Göke ◽  
J. M. Conlon

ABSTRACT Specific binding of 125I-labelled glucagon-like peptide-1(7–36)amide (GLP-1(7–36)amide) to rat insulinoma-derived RINm5F cells was dependent upon time and temperature and was proportional to cell concentration. Binding of radioactivity was inhibited in a concentration-dependent manner by GLP-1(7–36) amide consistent with the presence of a single class of binding site with a dissociation constant (Kd) of 204± 8 pmol/l (mean ± s.e.m.). Binding of the peptide resulted in a dose-dependent increase in cyclic AMP concentrations (half maximal response at 250 ± 20 pmol/l). GLP-1(1–36)amide was approximately 200 times less potent than GLP-1(7–36)amide in inhibiting the binding of 125I-labelled GLP-1(7–36)amide to the cells (Kd of 45±6 nmol/l). Binding sites for GLP-1 (7–36)amide were not present on dispersed enterocytes from porcine small intestine. J. Endocr. (1988) 116, 357–362


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohua Yang ◽  
Min Zhang ◽  
Zhihong Lu ◽  
Linping Zhi ◽  
Huan Xue ◽  
...  

Glucagon-like peptide-1 receptor (GLP-1R) agonist-based therapeutics for type 2 diabetes mellitus have attracted worldwide attention. However, there are challenges in the development of small molecule GLP-1R agonists owing to the complexity of ligand recognition and signal induction mechanisms. Here, we attained S6 using virtual screening and fluorescent imaging plate reader (FLIPR)-based calcium assays. The purpose of this study was to identify and characterize S6, a novel small molecule GLP-1R agonist. Data from cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI) indicated that S6 could bind potently with GLP-1R. Radioimmunoassay data showed that S6 potentiated insulin secretion in a glucose-dependent manner and the insulinotropic effect was mediated by GLP-1R. Calcium imaging techniques suggested that S6 elevated the intracellular calcium concentration [(Ca2+)i] by activating GLP-1R. In patch-clamp experiments, we demonstrated that S6 inhibited voltage-dependent K+ (Kv) channels in a GLP-1R-dependent fashion. Besides, S6 significantly prolonged action potential duration but had no effect on voltage-dependent Ca2+ channels. In summary, these findings indicate that S6 stimulates glucose-dependent insulin secretion mainly by acting on GLP-1R, inhibiting Kv channels, increasing (Ca2+)i. This study will provide direction for the screening and development of novel small-molecule agents targeting GLP-1R in the future.


2013 ◽  
Vol 304 (7) ◽  
pp. E677-E685 ◽  
Author(s):  
Melissa A. Burmeister ◽  
Jennifer Ayala ◽  
Daniel J. Drucker ◽  
Julio E. Ayala

Glucagon-like peptide-1 (GLP-1) suppresses food intake via activation of a central (i.e., brain) GLP-1 receptor (GLP-1R). Central AMP-activated protein kinase (AMPK) is a nutrient-sensitive regulator of food intake that is inhibited by anorectic signals. The anorectic effect elicited by hindbrain GLP-1R activation is attenuated by the AMPK stimulator AICAR. This suggests that central GLP-1R activation suppresses food intake via inhibition of central AMPK. The present studies examined the mechanism(s) by which central GLP-1R activation inhibits AMPK. Supporting previous findings, AICAR attenuated the anorectic effect elicited by intracerebroventricular (icv) administration of the GLP-1R agonist exendin-4 (Ex-4). We demonstrate that Ex-4 stimulates glycolysis and suppresses AMPK phosphorylation in a glucose-dependent manner in hypothalamic GT1-7 cells. This suggests that inhibition of AMPK and food intake by Ex-4 requires central glucose metabolism. Supporting this, the glycolytic inhibitor 2-deoxyglucose (2-DG) attenuated the anorectic effect of Ex-4. However, icv glucose did not enhance the suppression of food intake by Ex-4. AICAR had no effect on Ex-4-mediated reduction in locomotor activity. We also tested whether other carbohydrates affect the anorectic response to Ex-4. Intracerebroventricular pretreatment with the sucrose metabolite fructose, an AMPK activator, attenuated the anorectic effect of Ex-4. This potentially explains the increased food intake observed in sucrose-fed mice. In summary, we propose a model whereby activation of the central GLP-1R reduces food intake via glucose metabolism-dependent inhibition of central AMPK. We also suggest that fructose stimulates food intake by impairing central GLP-1R action. This has significant implications given the correlation between sugar consumption and obesity.


2014 ◽  
Vol 221 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Antonella Amato ◽  
Sara Baldassano ◽  
Rosa Liotta ◽  
Rosa Serio ◽  
Flavia Mulè

Glucagon-like peptide 1 (GLP1) is a naturally occurring peptide secreted by intestinal L-cells. Though its primary function is to serve as an incretin, GLP1 reduces gastrointestinal motility. However, only a handful of animal studies have specifically evaluated the influence of GLP1 on colonic motility. Consequently, the aims of this study were to investigate the effects induced by exogenous GLP1, to analyze the mechanism of action, and to verify the presence of GLP1 receptors (GLP1Rs) in human colon circular muscular strips. Organ bath technique, RT-PCR, western blotting, and immunofluorescence were used. In human colon, exogenous GLP1 reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. This inhibitory effect was significantly reduced by exendin (9–39), a GLP1R antagonist, which per se significantly increased the spontaneous mechanical activity. Moreover, it was abolished by tetrodotoxin, a neural blocker, or Nω-nitro-l-arginine – a blocker of neuronal nitric oxide synthase (nNOS). The biomolecular analysis revealed a genic and protein expression of the GLP1R in the human colon. The double-labeling experiments with anti-neurofilament or anti-nNOS showed, for the first time, that immunoreactivity for the GLP1R was expressed in nitrergic neurons of the myenteric plexus. In conclusion, the results of this study suggest that GLP1R is expressed in the human colon and, once activated by exogenous GLP1, mediates an inhibitory effect on large intestine motility through NO neural release.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jian Xu ◽  
Jingjing Wang ◽  
Yusheng Cheng ◽  
Xiang Li ◽  
Mengyu He ◽  
...  

Chronic kidney diseases are characterized by renal fibrosis with excessive matrix deposition, leading to a progressive loss of functional renal parenchyma and, eventually, renal failure. Renal microcirculation lesions, including the phenotypic conversion of vascular cells, contribute to renal fibrosis. Here, renal microcirculation lesions were established with monocrotaline (MCT, 60 mg/kg). Sitagliptin (40 mg/kg/d), a classical dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuated the renal microcirculation lesions by inhibiting glomerular tuft hypertrophy, glomerular mesangial expansion, and microvascular thrombosis. These effects of sitagliptin were mediated by glucagon-like peptide-1 receptor (GLP-1R), since they were blocked by the GLP-1R antagonist exendin-3 (Ex-3, 40 ug/kg/d). The GLP-1R agonist liraglutide showed a similar renal protective effect in a dose-independent manner. In addition, sitagliptin, as well as liraglutide, alleviated the MCT-induced apoptosis of renal cells by increasing the expression of survival factor glucose-regulated protein 78 (GRP78), which was abolished by the GLP-1R antagonist Ex-3. Sitagliptin and liraglutide also effectively ameliorated the conversion of vascular smooth muscle cells (SMCs) from a synthetic phenotype to contractile phenotype. Moreover, sitagliptin and liraglutide inhibited endothelial-mesenchymal transition (EndMT) via downregulating transforming growth factor-β1 (TGF-β1). Collectively, these findings suggest that DPP-4 inhibition can reduce microcirculation lesion-induced renal fibrosis in a GLP-1-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document