scholarly journals Actions of glucagon-like peptide-1 on KATP channel-dependent and -independent effects of glucose, sulphonylureas and nateglinide

2006 ◽  
Vol 190 (3) ◽  
pp. 889-896 ◽  
Author(s):  
Neville H McClenaghan ◽  
Peter R Flatt ◽  
Andrew J Ball

This study examined the effects of glucagon-like peptide-1 (GLP-1) on insulin secretion alone and in combination with sulphonylureas or nateglinide, with particular attention to KATP channel-independent insulin secretion. In depolarised cells, GLP-1 significantly augmented glucose-induced KATP channel-independent insulin secretion in a glucose concentration-dependent manner. GLP-1 similarly augmented the KATP channel-independent insulin-releasing effects of tolbutamide, glibenclamide or nateglinide. Downregulation of protein kinase A (PKA)- or protein kinase C (PKC)-signalling pathways in culture revealed that the KATP channel-independent effects of sulphonylureas or nateglinide were critically dependent upon intact PKA and PKC signalling. In contrast, GLP-1 exhibited a reduced but still significant insulin-releasing effect following PKA and PKC downregulation, indicating that GLP-1 can modulate KATP channel-independent insulin secretion by protein kinase-dependent and -independent mechanisms. The synergistic insulin-releasing effects of combinatorial GLP-1 and sulphonylurea/nateglinide were lost following PKA- or PKC-desensitisation, despite GLP-1 retaining an insulin-releasing effect, demonstrating that GLP-1 can induce insulin release under conditions where sulphonylureas and nateglinide are no longer effective. Our results provide new insights into the mechanisms of action of GLP-1, and further highlight the promise of GLP-1 or similarly acting analogues alone or in combination with sulphonylureas or meglitinide drugs in type 2 diabetes therapy.

2000 ◽  
Vol 164 (1) ◽  
pp. 13-19 ◽  
Author(s):  
EG Siegel ◽  
A Seidenstucker ◽  
B Gallwitz ◽  
F Schmitz ◽  
A Reinecke-Luthge ◽  
...  

Liver cirrhosis is often accompanied by a disturbed carbohydrate metabolism similar to type 2 diabetes. To investigate the severity of the defect in insulin secretion in this form of diabetes, we measured insulin release from isolated pancreatic islets of rats with CCl(4)-phenobarbital-induced liver cirrhosis. Cirrhosis was confirmed by clinical signs, elevated liver enzymes and histology. Fasting venous plasma glucose concentrations were equal in rats with liver cirrhosis and in controls. Plasma insulin and glucagon concentrations were significantly greater (P<0.01) in cirrhotic rats than in control animals. Glucose (16.7 mM)-induced stimulation of insulin release from pancreatic islets revealed a twofold increase in control and cirrhotic rats. Basal and stimulated insulin secretion, however, were significantly lower in cirrhotic animals. The incretin hormone, glucagon-like peptide-1 (GLP-1), has therapeutic potential for the treatment of type 2 diabetes. Therefore, islets from control and cirrhotic animals were incubated with GLP-1 in concentrations from 10(-)(11) to 10(-)(6) M. GLP-1 stimulated insulin release in a concentration-dependent manner. In islets from cirrhotic rats, basal and stimulated insulin secretion was blunted compared with controls. These data show that the hyperinsulinemia observed in liver cirrhosis is not due to an increase of insulin secretion from islets, but could be explained by decreased hepatic clearance of insulin. GLP-1 may ameliorate diabetes in patients with liver cirrhosis.


2015 ◽  
Vol 4 ◽  
Author(s):  
Yoshie Fujii ◽  
Noriko Osaki ◽  
Tadashi Hase ◽  
Akira Shimotoyodome

AbstractThe widespread prevalence of diabetes, caused by impaired insulin secretion and insulin resistance, is now a worldwide health problem. Glucagon-like peptide 1 (GLP-1) is a major intestinal hormone that stimulates glucose-induced insulin secretion from β cells. Prolonged activation of the GLP-1 signal has been shown to attenuate diabetes in animals and human subjects. Therefore, GLP-1 secretagogues are attractive targets for the treatment of diabetes. Recent epidemiological studies have reported that an increase in daily coffee consumption lowers diabetes risk. The present study examined the hypothesis that the reduction in diabetes risk associated with coffee consumption may be mediated by the stimulation of GLP-1 release by coffee polyphenol extract (CPE). GLP-1 secretion by human enteroendocrine NCI-H716 cells was augmented in a dose-dependent manner by the addition of CPE, and was compatible with the increase in observed active GLP-1(7–36) amide levels in the portal blood after administration with CPE alone in mice. CPE increased intracellular cyclic AMP (cAMP) levels in a dose-dependent manner, but this was not mediated by G protein-coupled receptor 119 (GPR119). The oral administration of CPE increased diet (starch and glyceryl trioleate)-induced active GLP-1 secretion and decreased glucose-dependent insulinotropic polypeptide release. Although CPE administration did not affect diet-induced insulin secretion, it decreased postprandial hyperglycaemia, which indicates that higher GLP-1 levels after the ingestion of CPE may improve insulin sensitivity. We conclude that dietary coffee polyphenols augment gut-derived active GLP-1 secretion via the cAMP-dependent pathway, which may contribute to the reduced risk of type 2 diabetes associated with daily coffee consumption.


2007 ◽  
Vol 192 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Thomas H Claus ◽  
Clark Q Pan ◽  
Joanne M Buxton ◽  
Ling Yang ◽  
Jennifer C Reynolds ◽  
...  

Type 2 diabetes is characterized by reduced insulin secretion from the pancreas and overproduction of glucose by the liver. Glucagon-like peptide-1 (GLP-1) promotes glucose-dependent insulin secretion from the pancreas, while glucagon promotes glucose output from the liver. Taking advantage of the homology between GLP-1 and glucagon, a GLP-1/glucagon hybrid peptide, dual-acting peptide for diabetes (DAPD), was identified with combined GLP-1 receptor agonist and glucagon receptor antagonist activity. To overcome its short plasma half-life DAPD was PEGylated, resulting in dramatically prolonged activity in vivo. PEGylated DAPD (PEG-DAPD) increases insulin and decreases glucose in a glucose tolerance test, evidence of GLP-1 receptor agonism. It also reduces blood glucose following a glucagon challenge and elevates fasting glucagon levels in mice, evidence of glucagon receptor antagonism. The PEG-DAPD effects on glucose tolerance are also observed in the presence of the GLP-1 antagonist peptide, exendin(9–39). An antidiabetic effect of PEG-DAPD is observed in db/db mice. Furthermore, PEGylation of DAPD eliminates the inhibition of gastrointestinal motility observed with GLP-1 and its analogues. Thus, PEG-DAPD has the potential to be developed as a novel dual-acting peptide to treat type 2 diabetes, with prolonged in vivo activity, and without the GI side-effects.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Akio Monji ◽  
Yasuko K Bando ◽  
Haruya Kawase ◽  
Morihiko Aoyama ◽  
Toyoaki Murohara

RATIONALE: Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that maintains basal ATP yield and its expression level is increased by fasting, exercise, and some NAD+ intermediates. We recently reported that the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 (Ex-4) ameliorated cardiac mitochondrial remodeling in diabetic cardiomyopathy via increase in cardiac cyclic AMP (AJP2013). Because changes in cyclic AMP level is regulated by adenylyl cyclase which is one of the downstream target of Ex-4, we hypothesized that SIRT3 may involve in the Ex-4-mediated myocardial reverse remodeling of mitochondria in diabetic mice. METHODS: Type 2 diabetic Mice (16-week old male) were allocated into experimental groups as follows: Ex-4 (24 nmole/kg/day, subcutaneously administrated by osmotic pump for 40 days, DIO/Ex-4) and vehicle control (DIO/CON). Heart samples and cultured rat neonatal cardiomyocytes were subjected to mitochondrial fractionation using density gradient. RESULTS: Cardiac cyclic AMP concentration and phosphorylation of CREB were elevated in DIO-ex4, suggesting successful administration of Ex-4. Electron microscopic analysis revealed that Ex-4 reversed destroyed cristae structure and defragmented mitochondria of DIO/CON heart. The ratio of expression levels of Mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) was consistently suppressed by Ex-4 treatment, suggesting normalization of mitochondrial morphology. Of note, DIO-CON exhibited marked decrease in cardiac SIRT3 level compared to lean/nondiabetic counterpart, which was reversed by exendin-4 treatment. Pharmacological production of intracellular cAMP levels (Isoprotelenol (10 microM) and 8-bromo-cyclic AMP (1 mM)) increased SIRT3 mRNA in cultured primary cardiomyocytes. The AMP-activated protein kinase (AMPK) inhibitition blocked the increase in SIRT3 mRNA, indicating that the SIRT3 expression was regulated by AMPK-dependent manner. CONCLUSIONS: Our results indicate that Ex-4 reversed abnormal suppression of SIRT3 in mitochondria via activating the PKA/AMPK-dependent pathway.


2006 ◽  
Vol 00 (02) ◽  
Author(s):  
Carolyn F Deacon ◽  
Jens Juul Holst

Type 2 diabetes mellitus (T2DM) is a progressive disease, characterized by insulin resistance, impaired glucose-induced insulin secretion, inappropriately elevated glucagon concentrations, and hyperglycemia. Many patients cannot obtain satisfactory glycemic control with current therapies, and eventually develop microvascular and macrovascular diabetic complications. New and more effective agents, targeted not only at treatment, but also at prevention of the disease, its progression, and its associated complications, are, therefore, required. One new approach focuses on the effects of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which enhance mealinduced insulin secretion.1


2011 ◽  
Vol 286 (18) ◽  
pp. 15895-15907 ◽  
Author(s):  
Laurence J. Miller ◽  
Quan Chen ◽  
Polo C.-H. Lam ◽  
Delia I. Pinon ◽  
Patrick M. Sexton ◽  
...  

The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7–36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu141 above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp297 within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.


2019 ◽  
Vol 26 (10) ◽  
pp. 1891-1907 ◽  
Author(s):  
Cai-Guo Yu ◽  
Ying Fu ◽  
Yuan Fang ◽  
Ning Zhang ◽  
Rong-Xin Sun ◽  
...  

Background: Type-2 diabetes mellitus accounts for 80-90% of diabetic patients. So far, the treatment of diabetes mainly aims at elevating insulin level and lowering glucose level in the peripheral blood and mitigating insulin resistance. Physiologically, insulin secretion from pancreatic β cells is delicately regulated. Thus, how insulin-related therapies could titrate blood glucose appropriately and avoid the occurrence of hypoglycemia remains an important issue for decades. Similar question is addressed on how to attenuate vascular complication in diabetic subjects. Methods: We overviewed the evolution of each class of anti-diabetic drugs that have been used in clinical practice, focusing on their mechanisms, clinical results and cautions. Results: Glucagon-like peptide-1 receptor agonists stimulate β cells for insulin secretion in response to diet but not in fasting stage, which make them superior than conventional insulinsecretion stimulators. DPP-4 inhibitors suppress glucagon-like peptide-1 degradation. Sodium/ glucose co-transporter 2 inhibitors enhance glucose clearance through urine excretion. The appearance of these new drugs provides new information about glycemic control. We update the clinical findings of Glucagon-like peptide-1 receptor agonists, DPP-4 inhibitors and Sodium/glucose cotransporter 2 inhibitors in glycemic control and the risk or progression of cardiovascular disease in diabetic patients. Stem cell therapy might be an alternative tool for diabetic patients to improve β cell regeneration and peripheral ischemia. We summarize the clinical results of mesenchymal stem cells transplanted into patients with diabetic limb and foot. Conclusion: A stepwise intensification of dual and triple therapy for individual diabetic patient is required to achieve therapeutic target.


Endocrinology ◽  
2020 ◽  
Vol 161 (2) ◽  
Author(s):  
Li Wang ◽  
Yixiang Li ◽  
Bei Guo ◽  
Jiajia Zhang ◽  
Biao Zhu ◽  
...  

Abstract Myeloid-derived growth factor (MYDGF), which is produced by bone marrow–derived cells, mediates cardiac repair following myocardial infarction by inhibiting cardiac myocyte apoptosis to subsequently reduce the infarct size. However, the function of MYDGF in the incretin system of diabetes is still unknown. Here, loss-of-function and gain-of-function experiments in mice revealed that MYDGF maintains glucose homeostasis by inducing glucagon-like peptide-1 (GLP-1) production and secretion and that it improves glucose tolerance and lipid metabolism. Treatment with recombinant MYDGF increased the secretion and production of GLP-1 in STC-1 cells in vitro. Mechanistically, the positive effects of MYDGF are potentially attributable to the activation of protein kinase A/glycogen synthase kinase 3β/β-catenin (PKA/GSK-3β/β-catenin) and mitogen-activated protein kinase (MAPK) kinases/extracellular regulated protein kinase (MEK/ERK) pathways. Based on these findings, MYDGF promotes the secretion and production of GLP-1 in intestinal L-cells and potentially represents a potential therapeutic medication target for type 2 diabetes.


2014 ◽  
Vol 307 (3) ◽  
pp. G330-G337 ◽  
Author(s):  
Ramona Pais ◽  
Tamara Zietek ◽  
Hans Hauner ◽  
Hannelore Daniel ◽  
Thomas Skurk

Type 2 diabetes is associated with elevated circulating levels of the chemokine RANTES and with decreased plasma levels of the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 is a peptide secreted from intestinal L-cells upon nutrient ingestion. It enhances insulin secretion from pancreatic β-cells and protects from β-cell loss but also promotes satiety and weight loss. In search of chemokines that may reduce GLP-1 secretion we identified RANTES and show that it reduces glucose-stimulated GLP-1 secretion in the human enteroendocrine cell line NCI-H716, blocked by the antagonist Met-RANTES, and in vivo in mice. RANTES exposure to mouse intestinal tissues lowers transport function of the intestinal glucose transporter SGLT1, and administration in mice reduces plasma GLP-1 and GLP-2 levels after an oral glucose load and thereby impairs insulin secretion. These data show that RANTES is involved in altered secretion of glucagon-like peptide hormones most probably acting through SGLT1, and our study identifies the RANTES-receptor CCR1 as a potential target in diabetes therapy.


Sign in / Sign up

Export Citation Format

Share Document