Inhibin-like activity in Sertoli cell culture media and testicular homogenates from rats of various ages

1987 ◽  
Vol 113 (1) ◽  
pp. 103-110 ◽  
Author(s):  
A. M. Ultee-van Gessel ◽  
F. H. de Jong

ABSTRACT The influence of age on testicular inhibin in untreated, neonatally hemicastrated and prenatally irradiated rats was studied using in-vivo and in-vitro experiments. In testicular cytosols prepared from 1-, 7-, 14-, 21-, 42- and 63-day-old rats concentrations of testicular inhibin could be measured with an in-vitro bioassay method using dispersed pituitary cells. Preparations of testicular cytosols caused a dose-dependent suppression of pituitary FSH secretion, whereas no effects were found on LH secretion. Testicular content of inhibin increased gradually with age, while after 14 days of age a relatively large increase of peripheral FSH concentrations occurred in all experimental groups. Neonatal hemicastration or prenatal irradiation resulted in decreased inhibin content of the testis and increased plasma FSH levels. The production of inhibin activity by Sertoli cells obtained from 7-, 14-, 21-, 42- and 63-day-old normal rats was measured during a 24-h incubation period on the third day of culture. The inhibin production per 106 plated Sertoli cells decreased rapidly after 14 days of age and the lowest production of inhibin was found in Sertoli cells from rats of 63 days of age. After preincubation with ovine FSH significantly larger amounts of inhibin activity were detected in spent media from 21-day-old rat testes. In contrast, suppression of inhibin production was found after preculture in the presence of testosterone at most of the ages studied. These data from in-vivo and in-vitro experiments indicate that a reciprocal relationship exists between pituitary FSH secretion and inhibin production before the age of 21 days. This relationship supports the concept that inhibin is a physiologically important modulator of FSH secretion before puberty, while the role of the large amount of testicular inhibin present at the older ages remains to be determined. J. Endocr. (1987) 113, 103–110

1986 ◽  
Vol 109 (3) ◽  
pp. 411-418 ◽  
Author(s):  
A. M. Ultee-van Gessel ◽  
F. G. Leemborg ◽  
F. H. de Jong ◽  
H. J. van der Molen

ABSTRACT The influence of in-vitro conditions on the production of inhibin by Sertoli cells from 21-day-old normal and prenatally irradiated rat testes was studied by measuring inhibin activity in culture media, using the suppression of the release of FSH from cultured rat pituitary cells. Sertoli cells secreted inhibin-like activity during at least 21 days of culture, and cells cultured at 37 °C produced significantly more inhibin than those cultured at 32 °C. The presence of fetal calf serum had no significant effect on inhibin production at 32 °C, while at 37 °C the production was decreased. The presence of ovine FSH stimulated inhibin secretion, while inhibin concentrations in Sertoli cell culture media were decreased after the addition of testosterone. Testosterone, added together with ovine FSH, suppressed inhibin secretion when compared with the levels found in the presence of FSH alone. The presence of spermatogenic cells decreased the release of inhibin. From these results it was concluded that both Sertoli cells isolated from normal immature rat testes and those from testes without spermatogenic cells can secrete inhibin-like activity in culture. A number of discrepancies with in-vivo observations was observed. Therefore, it is likely that the in-vivo situation is too complicated for direct study of the regulation of inhibin production, because of mutual interactions between the testicular compartments. J. Endocr. (1986) 109, 411–418


1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


1987 ◽  
Vol 253 (3) ◽  
pp. E233-E237
Author(s):  
R. S. Chuknyiska ◽  
M. R. Blackman ◽  
G. S. Roth

We measured in vitro release of luteinizing hormone (LH) in the presence of 1.5 mM extracellular calcium, with and without LH-releasing hormone (LHRH; 10(-10) to 10(-7) M) or the ionophore A23187 (10(-7) to 10(-4) M), in primary cultures of anterior pituitary cells from intact mature (6 mo) and old (24 mo) male and intact and ovariectomized mature and old female Wistar rats. Base-line as well as LHRH- and A23187-mediated LH secretion was decreased from cells of old rats. However, exposure to A23187 led to a nearly twofold greater augmentation of LH release from cells of old rats, thus decreasing the apparent age-related LH secretory deficit by approximately one-half. We then measured LHRH-mediated (10(-8) M) vs. A23187-mediated (10(-4) M) LH release with and without extracellular calcium (0.08-1.5 mM). For cells from both mature and old rats, there was a similar calcium dependency for A23187- and LHRH-mediated LH release, with optimal LH secretion at 1.0-1.5 mM extracellular calcium concentrations. Again, both LHRH- and A23187-stimulated LH release was significantly lower and exposure to A23187 led to a greater increase in LH release from cells of old rats. Taken together with similar findings in other systems, these data suggest that the in vitro LH secretory defect of pituitary cells from old rats results in part from one or more defects in calcium mobilization and that such alterations may be a widespread manifestation of aging.


2020 ◽  
Vol 21 (7) ◽  
pp. 2549 ◽  
Author(s):  
Asghar Ali ◽  
Mark Stenglein ◽  
Thomas Spencer ◽  
Gerrit Bouma ◽  
Russell Anthony ◽  
...  

LIN28 inhibits let-7 miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28-let-7 axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells. At day 16, conceptus elongation was significantly reduced in LIN28A and LIN28B knockdowns. Let-7 miRNAs were significantly increased and IGF2BP1-3, HMGA1, ARID3B, and c-MYC were decreased in trophectoderm from knockdown conceptuses. Ovine trophoblast (OTR) cells derived from day 16 trophectoderm are a useful tool for in vitro experiments. Surprisingly, LIN28 was significantly reduced and let-7 miRNAs increased after only a few passages of OTR cells, suggesting these passaged cells represent a more differentiated phenotype. To create an OTR cell line more similar to day 16 trophectoderm we overexpressed LIN28A and LIN28B, which significantly decreased let-7 miRNAs and increased IGF2BP1-3, HMGA1, ARID3B, and c-MYC compared to control. This is the first study showing the role of the LIN28-let-7 axis in trophoblast proliferation and conceptus elongation in vivo. These results suggest that reduced LIN28 during early placental development can lead to reduced trophoblast proliferation and sheep conceptus elongation at a critical period for successful establishment of pregnancy.


1999 ◽  
Vol 340 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Sikha Bettina MUKHERJEE ◽  
S. ARAVINDA ◽  
B. GOPALAKRISHNAN ◽  
Sushma NAGPAL ◽  
Dinakar M. SALUNKE ◽  
...  

The seminiferous tubular fluid (STF) provides the microenvironment necessary for spermatogenesis in the adluminal compartment of the seminiferous tubule (ST), primarily through secretions of the Sertoli cell. Earlier studies from this laboratory demonstrated the presence of glutathione S-transferase (GST) in STF collected from adult rat testis and in the spent media of ST cultures. This study describes the cellular source, isoform composition and possible function of GSTs in the STF. The major GST isoforms present in STF in vivo share extensive N-terminal similarity with rat GSTM1 (rGSTM1), rGSTM2, rGSTM3 and rGST-Alpha. Molecular masses of rGSTM2, rGSTM3 and rGST-Alpha from liver and testis sources were similar, unlike STF-GSTM1, which was larger by 325 Da than its liver counterpart. Peptide digest analysis profiles on reverse-phase HPLC between liver and STF isoforms were identical, and N-terminal sequences of selected peptides obtained by digestion of the various isoforms were closely similar. The above results confirmed close structural similarity between liver and STF-GST isoforms. Active synthesis and secretion of GSTs by the STs were evident from recovery of radiolabelled GST from the spent media of ST cultures. Analysis of secreted GST isoforms showed that GST-Alpha was not secreted by the STs in vitro, whereas there was an induction of GST-Pi secretion. Detection of immunostainable GST-Mu in Sertoli cells in vitro and during different stages of the seminiferous epithelium in vivo, coupled with the recovery of radiolabelled GST from Sertoli cell-culture media, provided evidence for Sertoli cells as secretors of GST. In addition, STF of ‘Sertoli cell only’ animals showed no change in the profile of GST isoform secretion, thereby confirming Sertoli cells as prime GST secretors. Non-recovery of [35S]methionine-labelled GSTs from germ cell culture supernatants, but their presence in germ cell lysates, confirm the ability of the germ cells to synthesize, but not to release, GSTs. Functionally, STF-GSTM1 appeared to serve as a steroid-binding protein by its ability to bind to testosterone and oestradiol, two important hormones in the ST that are essential for spermatogenesis, with binding constants of < 9.8×10-7 M for testosterone and 9×10-6 M for oestradiol respectively.


2018 ◽  
Vol 315 (5) ◽  
pp. E924-E948 ◽  
Author(s):  
Qing Wen ◽  
Elizabeth I. Tang ◽  
Wing-yee Lui ◽  
Will M. Lee ◽  
Chris K. C. Wong ◽  
...  

In the mammalian testis, spermatogenesis is dependent on the microtubule (MT)-specific motor proteins, such as dynein 1, that serve as the engine to support germ cell and organelle transport across the seminiferous epithelium at different stages of the epithelial cycle. Yet the underlying molecular mechanism(s) that support this series of cellular events remain unknown. Herein, we used RNAi to knockdown cytoplasmic dynein 1 heavy chain (Dync1h1) and an inhibitor ciliobrevin D to inactivate dynein in Sertoli cells in vitro and the testis in vivo, thereby probing the role of dynein 1 in spermatogenesis. Both treatments were shown to extensively induce disruption of MT organization across Sertoli cells in vitro and the testis in vivo. These changes also perturbed the transport of spermatids and other organelles (such as phagosomes) across the epithelium. These changes thus led to disruption of spermatogenesis. Interestingly, the knockdown of dynein 1 or its inactivation by ciliobrevin D also perturbed gross disruption of F-actin across the Sertoli cells in vitro and the seminiferous epithelium in vivo, illustrating there are cross talks between the two cytoskeletons in the testis. In summary, these findings confirm the role of cytoplasmic dynein 1 to support the transport of spermatids and organelles across the seminiferous epithelium during the epithelial cycle of spermatogenesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3938-3938
Author(s):  
Eli I. Lev ◽  
Jing-fei Dong ◽  
Marcin Bujak ◽  
Khatira Aboulfatova ◽  
Neal S. Kleiman ◽  
...  

Abstract We and others have found that platelets play an important role in the recruitment of endothelial progenitor cells to sights of vascular injury. However, it is not clear whether the EPCs mature and differentiate to endothelial cells following recruitment to the vascular injury sites. In addition, there is limited in vivo data to support the role of EPCs in re-endothlialization following vascular injury. We conducted in vitro experiments to investigate the maturation of EPCs on platelet based-media and in vivo experiments to evaluate the recruitment of EPCs following vascular injury. In in vitro experiments human EPCs were isolated from donated buffy coats by magnetic microbeads and flow cytometry cell sorting using CD133 and VEGFR-2, respectively, as cell markers. Isolated viable EPCs (CD133+, VEGFR-2+ cells) were plated on human fibronectin or a monolayer of washed human platelets. Cell colonies were counted 7 days after plating and stained for the endothelial cell markers CD31 (PECAM-1) and CD144 (VE-cadherin). The mean number of colony-forming cells was 35±2.6 colonies/106 cells on platelets, which was significantly higher than 18±4.2 colonies/106 cells on fibronectin (n = 4, P&lt;0.01). Apart from the difference in colony numbers, the EPC colonies grew faster on the platelet substrate, were larger, and had more spindle-shaped cells (Figure 1 - staining of EPC colonies for CD31 and CD144). In the in vivo experiments a model of transluminal injury to mouse femoral arteries was used. Femoral artery denudation was performed by 0.25-mm-diameter angioplasty guidewire. Injured femoral arteries were compared to the contra-lateral controls (uninjured), and were harvested 1.5 hours following the injury and immunostaining performed with an anti-VEGFR-2 antibody. Four experiments showed a markedly higher number of VEGFR-2+ cells in the artery that has undergone denudation. These experiments indicate that a media composed of platelets promotes the maturation and differentiation of EPCs. Furthermore, in vivo, EPCs are recruited early following vascular injury. Thus, homing, maturation, and differentiation of EPCs are mediated by platelets.


2017 ◽  
Vol 233 (2) ◽  
pp. 159-174 ◽  
Author(s):  
Nilli Zmora ◽  
Ten-Tsao Wong ◽  
John Stubblefield ◽  
Berta Levavi-Sivan ◽  
Yonathan Zohar

Kisspeptin and neurokinin B (NKB) are neuropeptides co-expressed in the mammalian hypothalamus and coordinately control GnRH signaling. We have found that Nkb and kisspeptin neurons are distinct in the teleost, striped bass (STB) and capitalized on this phenomenon to study the mode of action of Nkb and its related neuropeptide-F (Nkf), both of which are encoded by the tac3 gene. In vitro brain slices and in vivo administration studies revealed that Nkb/f consistently downregulated kiss2, whereas antagonist (AntD) administration restored this effect. Overall, a minor effect was noted on gnrh1 expression, whereas Gnrh1 content in the pituitaries was reduced after Nkb/f treatment and increased with AntD. Concomitantly, immunostaining demonstrated that hypothalamic Nkb neurons border and densely innervate the largest kiss2 neuronal population in the hypothalamus, which also coexpresses Nkb receptor. No expression of Nkb receptor or Nkb neuronal projections was detected near/in Gnrh1 soma in the preoptic area. At the level of the pituitary, however, the picture was more complex: both Nkb/f and AntD upregulated lhb and fshb expression and Lh secretion in vivo. Together with the stimulatory effect of Nkb/f on Lh/Fsh secretion from pituitary cells, in vitro, this may indicate an additional independent action of Nkb/f within the pituitary, in which the hypothalamic pathway is more dominant. The current study demonstrates that Nkb/f utilizes multiple pathways to regulate reproduction in the STB and that in the brain, Nkb mainly acts as a negative modulator of kiss2 to regulate the release of Gnrh1.


2018 ◽  
Vol 115 (19) ◽  
pp. 4927-4932 ◽  
Author(s):  
Yangjin Kim ◽  
Ji Young Yoo ◽  
Tae Jin Lee ◽  
Joseph Liu ◽  
Jianhua Yu ◽  
...  

In the present work, we investigated the role of natural killer (NK) cells in combination therapy with oncolytic virus (OV) and bortezomib, a proteasome inhibitor. NK cells display rapid and potent immunity to metastatic and hematological cancers, and they overcome immunosuppressive effects of tumor microenvironment. We developed a mathematical model to address the question of how the density of NK cells affects the growth of the tumor. We found that the antitumor efficacy increases when the endogenous NKs are depleted and also when exogenous NK cells are injected into the tumor. These predictions were validated by our in vivo and in vitro experiments.


Sign in / Sign up

Export Citation Format

Share Document