Basic fibroblast growth factor affects DNA synthesis and cell function and activates multiple signalling pathways in rat thyroid FRTL-5 and pituitary GH3 cells

1990 ◽  
Vol 127 (1) ◽  
pp. 39-46 ◽  
Author(s):  
E. G. Black ◽  
A. Logan ◽  
J. R. E. Davis ◽  
M. C. Sheppard

ABSTRACT We have used a recombinant human basic fibroblast growth factor (basic FGF) to study its effects on cell proliferation, gene expression and accumulation of cyclic AMP (cAMP) and inositol phosphates in two well-characterized endocrine cell lines, FRTL-5 rat thyroid and GH3 rat pituitary cells. Basic FGF induced a dose-dependent increase in mitogenesis (assessed by measuring incorporation of [3H]thymidine) in FRTL-5 cells (40 ng basic FGF/ml increased mitogenesis above the control value by 2148±108% (mean ± s.e.m.), but inhibited mitogenesis in GH3 cells at all doses (85±4% of control with 40 ng basic FGF/ml)). Thyroglobulin mRNA concentration was increased in FRTL-5 cells (126±6% of control with 40 ng basic FGF/ml) as was prolactin mRNA in GH3 cells (246±11% of control with 40 ng basic FGF/ml), but GH mRNA in GH3 cells was not significantly affected by any dose of basic FGF. Intracellular cAMP was reduced by basic FGF in both FRTL-5 and GH3 cells (40 ng bFGF/ml giving 80±5% of the control value in FRTL-5, and 67±15% of the control value in GH3 cells) despite increased levels when FRTL-5 cells were stimulated with 150 μU TSH/ml (5645±484% of control) or GH3 cells were stimulated by 10 μmol forskolin/1 (3347±396% of control). In both FRTL-5 and GH3 cells, accumulation of [3H]inositol phosphates was increased by 40 ng basic FGF/ml (201±6 and 330±51% of control values respectively). We have shown that basic FGF has different effects on mitogenesis in the two cell lines; gene expression and accumulation of inositol phosphates were increased in both, whereas the intracellular concentration of cAMP was decreased. The actions of basic FGF may be mediated through both inhibition of adenylate cyclase and hydrolysis of phosphatidyl inositol bisphosphate as has been proposed for 3T3 fibroblasts. Our data suggest that there may be a physiological role for basic FGF in both thyroid and pituitary tissue. Journal of Endocrinology (1990) 127, 39–46

1993 ◽  
Vol 268 (8) ◽  
pp. 5588-5593
Author(s):  
M.M. Hurley ◽  
C. Abreu ◽  
J.R. Harrison ◽  
A.C. Lichtler ◽  
L.G. Raisz ◽  
...  

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 1059-1069 ◽  
Author(s):  
G. Brill ◽  
N. Vaisman ◽  
G. Neufeld ◽  
C. Kalcheim

We present evidence that basic fibroblast growth factor (bFGF)-producing cells stimulate primary differentiation of neurons from neural crest progenitors. Baby hamster kidney (BHK-21) cells were stably cotransfected with plasmid pSV2/neo, which contains the gene conferring resistance to the neomycin analog G418 and expression vectors containing the human bFGF cDNA. Various clones, which differed in their bFGF production levels, were isolated. Homogeneous neural crest cells were cultured on monolayers of bFGF-producing, BHK-21-derived cell lines. While the parental BHK-21 cells, which do not produce detectable bFGF, had poor neurogenic ability, the various bFGF-producing clones promoted a 1.5- to 4-fold increase in neuronal cell number compared to the parental cells. This increase was correlated with the levels of bFGF produced by the different transfected clones, which ranged between 2.3 and 140 ng/mg protein. In contrast, no stimulation of neuronal differentiation was observed when neural crest cells were grown on monolayers of parental BHK cells transfected with plasmid pSV2/neo alone, or on a parental BHK-derived clone, which secretes high amounts of recombinant vascular endothelial growth factor (VEGF). Furthermore, the neuron-promoting ability of bFGF-producing cells could be mimicked by addition of exogenous bFGF to neural crest cells grown on the parental BHK line. A similar treatment of neural crest cells grown on laminin substrata, instead of BHK cells, resulted in increased survival of non-neuronal cells, but not of neurons (see also Kalcheim, C. 1989, Dev. Biol. 134, 1–10). Taken together, these results suggest that bFGF stimulates neuronal differentiation of neural crest cells by a cell-mediated signalling mechanism.


2000 ◽  
Vol 17 (2) ◽  
pp. 157-164 ◽  
Author(s):  
RUN-TAO YAN ◽  
SHU-ZHEN WANG

Embryonic chick retinal pigment epithelial (RPE) cells can undergo transdifferentiation upon appropriate stimulation. For example, basic fibroblast growth factor (bFGF) induces intact RPE tissue younger than embryonic day 4.5 (E4.5) to transdifferentiate into a neural retina. NeuroD, a gene encoding a basic helix-loop–helix transcription factor, triggers de novo production of cells that resemble young photoreceptor cells morphologically and express general neuron markers (HNK-1/N-CAM and MAP2) and a photoreceptor-specific marker (visinin) from cell cultures of dissociated E6 RPE (Yan & Wang, 1998). The present study examined whether bFGF will lead to the same transdifferentiation phenomenon as neuroD when applied to dissociated, cultured E6 RPE cells, and whether interplay exists between the two factors under the culture conditions. Dissociated E6 RPE cells were cultured in the presence or absence of bFGF, and with or without the addition of retrovirus expressing neuroD. Gene expression was analyzed with immunocytochemistry and in situ hybridization. Unlike neuroD, bFGF did not induce the expression of visinin, or HNK-1/N-CAM and MAP2. However, bFGF elicited the expression of RA4 immunogenicity; yet, many of these RA4-positive cells lacked a neuronal morphology. Addition of bFGF to neuroD-expressing cultures did not alter the number of visinin-expressing cells; misexpression of neuroD in bFGF-treated cultures did not change the number of RA4-positive cells, suggesting the absence of interference or synergistic interaction between the two factors. Our data indicated that bFGF and neuroD induced the expression of different genes in cultured RPE cells.


1990 ◽  
Vol 145 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Dorit B. Donoviel ◽  
Sharon L. Amacher ◽  
Kevin W. Judge ◽  
Paul Bornstein

Sign in / Sign up

Export Citation Format

Share Document