Atrial natriuretic peptide in eel plasma, heart and brain characterized by homologous radioimmunoassay

1992 ◽  
Vol 135 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Y. Takei ◽  
K. Ando ◽  
M. Kawakami

ABSTRACT A highly specific and sensitive radioimmunoassay has been developed for the measurement of eel atrial natriuretic peptide (ANP). The antiserum, raised against eel ANP-(1–27) did not cross-react with two other eel natriuretic peptides, i.e. eel ventricular natriuretic peptide and C-type natriuretic peptide (CNP), or with any mammalian ANPs, CNPs or brain natriuretic peptides so far identified. The minimal detectable amount was 0·39 fmol (0·90 pg)/tube with more than 99% confidence. Because of its high sensitivity, the radioimmunoassay makes it possible to measure eel ANP directly with only a few microlitres of plasma without extraction. Using the radioimmunoassay we found high levels of ANP in the atrium (11 ± 2 pmol/mg wet tissue, n = 8), and much lower levels in the ventricle (56 ±8 fmol/mg, n=8) and the brain (22±1 fmol/mg, n = 8) of eels. Eel plasma contained a large amount of ANP (247 ± 66 fmol/ml, n= 8) compared with the levels reported in mammals, although atrial levels are similar between eels and mammals. Gel-permeation chromography revealed that a major form of ANP stored in the eel atrium, ventricle and brain has a molecular mass of approximately 14 kDa but low molecular forms of about 3 kDa are predominant in eel plasma. A detailed analysis with reverse-phase high-performance liquid chromatography showed that a major molecular form circulating in eel plasma is ANP-(1–27). ANP-(1–27) was also detected in small amounts in the eel atrium, ventricle and brain. Journal of Endocrinology (1992) 135, 325–331

1998 ◽  
Vol 95 (5) ◽  
pp. 547-555 ◽  
Author(s):  
J. G. LAINCHBURY ◽  
M. G. NICHOLLS ◽  
E. A. ESPINER ◽  
H. IKRAM ◽  
T. G. YANDLE ◽  
...  

1.The cardiac natriuretic peptides, atrial natriuretic peptide and brain natriuretic peptide, are degraded via clearance receptors and the enzyme neutral endopeptidase (EC 3.4.24.11). We studied the regional plasma concentrations of these peptides and their response to acute neutral endopeptidase inhibition in a consecutive series of patients with a broad spectrum of severity of cardiac dysfunction who were undergoing diagnostic right and left heart catheterization (24 patients, mean age 62.6 years). 2.Baseline blood samples were obtained for hormone analysis from femoral artery, femoral vein, renal vein, hepatic vein, superior vena cava, coronary sinus and pulmonary artery, and initial haemodynamic measurements were made. Twelve patients then received a neutral endopeptidase inhibitor (SCH 32615, 200 ;mg intravenously) and 12 received vehicle alone. The cardiac catheterization procedure was then completed and haemodynamic and hormone measurements were repeated. 3.Haemodynamic status was similar at baseline in both groups, and at repeated measurement (post-procedure after placebo or active drugs) haemodynamic variables were not significantly different from baseline values. Plasma levels of atrial and brain natriuretic peptides exhibited an arteriovenous increment (344% and 124% respectively) across the heart (femoral artery to coronary sinus) and decrement (by 28–54% and 9–16% respectively) across all other tissue beds (P< 0.05 for all) except the lung (no change). Final levels of atrial natriuretic peptide rose above initial levels at all sites in both groups (P< 0.05) except coronary sinus levels in the vehicle group (no change). The increase was consistently greater in the inhibitor group at all sites (P< 0.05 versus placebo). Levels of brain natriuretic peptide rose at all sites in the inhibitor group only (P< 0.05). The transcardiac step-up in atrial natriuretic peptide was markedly augmented after the administration of neutral endopeptidase inhibitor. Other tissue gradients were not significantly altered by neutral endopeptidase inhibitor. 4.Atrial and brain natriuretic peptides in plasma are degraded by a number of tissues, and respond differently to cardiac catheterization. Neutral endopeptidase has a significant role in determining plasma levels of natriuretic peptides, in part perhaps by influencing the amount of intact peptide reaching the circulation after secretion from the heart.


1994 ◽  
Vol 17 (11) ◽  
pp. 585-590
Author(s):  
T. Akiba ◽  
K. Ando ◽  
F. Marumo

An attempt was made to clarify whether the molecular forms of atrial natriuretic peptide (ANP) in the plasma of stable hemodialysis patients differ from those of healthy volunteers, and whether the ANP molecular forms in plasma might change during hemodialysis treatment. Ten stable hemodialysis patients with no clinical signs of cardiac disease were treated for 4 hours by a hollow fiber-type dialyzer. Plasma ANP concentrations before dialysis were 210 ± 101.6 pg/ml (mean ± SD), which were significantly higher than that of volunteers (59.2 ± 37.2 pg/ml, n=25). They were significantly decreased to 71.6 ± 60.1 pg/ml after dialysis. Molecular patterns of ANP were measured by gel permeation chromatography and reverse-phase high performance liquid chromatography. Immunoreactive alpha-ANP peaks of GPC, which co-migrated with authentic alpha-, beta-, and gamma-ANP, were supposed to be alpha-, beta-, and gamma-ANP. The plasma of four patients contained a beta-ANP peak before dialysis, and three of the four still contained a beta-ANP peak after dialysis. These results showed that the middle-molecular-weight ANP, which co-migrated with authetic beta-ANP and is supposed to be beta-ANP, may particularly be secreted in clinically stable hemodialysis patients.


1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Hirofumi Hashimoto ◽  
Hiroaki Fujihara ◽  
Makoto Kawasaki ◽  
Takeshi Saito ◽  
Minori Shibata ◽  
...  

Ghrelin is known as a potent orexigenic hormone through its action on the brain. In this study, we examined the effects of intracerebroventricular (icv) and iv injection of ghrelin on water intake, food intake, and urine volume in rats deprived of water for 24 h. Water intake that occurred after water deprivation was significantly inhibited by icv injection of ghrelin (0.1, 1, and 10 nmol/rat) in a dose-related manner, although food intake was stimulated by the hormone. The antidipsogenic effect was as potent as the orexigenic effect. Similarly, water intake was inhibited, whereas food intake was stimulated dose dependently after iv injection of ghrelin (0.1, 1, and 10 nmol/kg). The inhibition of drinking was comparable with, or even more potent than, atrial natriuretic peptide (ANP), an established antidipsogenic hormone, when administered icv, although the antidipsogenic effect lasted longer. ANP had no effect on food intake. Urine volume decreased dose relatedly after icv injection of ghrelin but not by ANP. Intravenous injection of ghrelin had no effect on urine volume. Because drinking usually occurs with feeding, food was withdrawn to remove the prandial drinking. Then the antidipsogenic effect of ghrelin became more potent than that of ANP and continued longer than when food was available. Expression of Fos was increased in the area postrema and the nucleus of the tractus solitarius by using immunohistochemistry after icv and iv injection of ghrelin. The present study convincingly showed that ghrelin is a potent antidisogenic peptide in rats.


1987 ◽  
Vol 65 (8) ◽  
pp. 1701-1705 ◽  
Author(s):  
Osamu Iimura ◽  
Kazuaki Shimamoto ◽  
Toshiaki Ando ◽  
Nobuyuki Ura ◽  
Hiroyuki Ishida ◽  
...  

Three types of antihuman atrial natriuretic peptide antiserum were obtained. From the study of cross-reactivity to human atrial natriuretic peptide fragments, it was suggested that antisera-1, -2, and -3 are mostly specific to 1–28, 5–25, and the ring structure, respectively. The estimated values of this hormone were significantly lower in the order of antisera-1, -2, and -3. Moreover, high performance liquid chromatographic study showed that various types of fragments of atrial natriuretic peptide exist in human plasma. These findings suggested that the highly specific antiserum to 1–28 human atrial natriuretic peptide such as antiserum-1 should be used to estimate the 1–28 human atrial natriuretic peptide levels in human plasma. From the study by using antiserum-1, it was concluded that the plasma human atrial natriuretic peptide increased in essential hypertensives, and in patients with primary aldosteronism, chronic renal failure, and malignant hypertension. Regarding the pathophysiological significance of increased plasma atrial natriuretic peptide, it is unlikely that this plays an important role in the etiology of essential hypertension or other hypertensive diseases, because the plasma level of this hormone is elevated in these patients. The increase of plasma atrial natriuretic peptide level in these patients should be considered to be a secondary or compensatory reaction to high blood pressure.


2003 ◽  
Vol 13 (3) ◽  
pp. 268-274 ◽  
Author(s):  
Håkan Wåhlander ◽  
Andreas Westerlind ◽  
Göran Lindstedt ◽  
Per-Arne Lundberg ◽  
Daniel Holmgren

We evaluated the concentrations of the brain and atrial natriuretic peptides in the plasma as markers of ventricular function and volume load in children with functionally univentricular hearts. We studied 7 children aged from 0.5 to 0.7 years with functionally univentricular hearts who had undergone a first palliative operation, and 10 children aged from 1.8 to 3.7 years who had undergone a bidirectional Glenn anastomosis at ages ranging from 0.4 to 1.0 year. As a control group, we studied 14 children without heart defects aged from 0.1 to 4.5 years. Levels of the brain natriuretic peptide were measured at 8.3 to 122 ng/l, with a mean of 52.8 ng/l, after the first palliative operation, compared to 0 to 16 ng/l, with a mean of 7.3 ng/l, after a bidirectional Glenn anastomosis, and 0 to 13.8 ng/l, with a mean of 5.9 ng/l, in the children serving as controls. Corresponding values for atrial natriuretic peptide were 17 to 203 ng/l, with a mean of 103 ng/l, after the first palliative operation, compared to 16 to 54 ng/l, with a mean of 29 ng/l, after the bidirectional Glenn anastomosis, and 12 to 52 ng/l, with a mean of 32 ng/l in the controls. Echocardiography showed that all the children with functionally univentricular hearts had normal ventricular function. Blood presssure, pulmonary arterial pressure, and arterial saturations of oxygen did not differ between the groups. We conclude, that in children with functionally univentricular hearts, the volume overload imposed on the heart after the first palliative operation is associated with increased production of brain and atrial natriuretic peptides, while after ventricular unloading, levels of the natriuretic peptides return to control values.


2010 ◽  
Vol 31 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Shingo Ito ◽  
Sumio Ohtsuki ◽  
Yuki Katsukura ◽  
Miho Funaki ◽  
Yusuke Koitabashi ◽  
...  

Cerebral atrial natriuretic peptide (ANP), which is generated in the brain, has functions in the regulation of brain water and electrolyte balance, blood pressure and local cerebral blood flow, as well as in neuroendocrine functions. However, cerebral ANP clearance is still poorly understood. The purpose of this study was to clarify the mechanism of blood–brain (BBB) efflux transport of ANP in mouse. Western blot analysis showed expression of natriuretic peptide receptor (Npr)-A and Npr-C in mouse brain capillaries. The brain efflux index (BEI) method confirmed elimination of [125I]human ANP (hANP) from mouse brain across the BBB. Inhibition studies suggested the involvement of Npr-C in vivo. Furthermore, rapid internalization of [125I]hANP by TM-BBB4 cells (an in vitro BBB model) was significantly inhibited by Npr-C inhibitors and by two different Npr-C-targeted short interfering RNAs (siRNAs). Finally, treatment with 1α,25-dihydroxyvitamin D3(1,25(OH)2D3) significantly increased Npr-C expression in TM-BBB4 cells, as determined by liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based targeted absolute proteomics. Our results indicate that Npr-C mediates brain-to-blood efflux transport of ANP at the mouse BBB as a pathway of cerebral ANP clearance. It seems likely that levels of natriuretic peptides in the brain are modulated by 1,25(OH)2D3 through upregulation of Npr-C expression at the BBB.


Sign in / Sign up

Export Citation Format

Share Document