Cytokines modulate the sensitivity of human fibroblasts to stimulation with insulin-like growth factor-I (IGF-I) by altering endogenous IGF-binding protein production
ABSTRACT Human dermal fibroblasts produce a number of insulin-like growth factor-binding proteins (IGFBPs) including the main circulating form, IGFBP-3. It has been suggested that the regulation of IGFBP secretion may play a major role in modulating insulin-like growth factor (IGF) bioactivity. We have quantified the effects of two cytokines, transforming growth factor-β1 (TGF-β1) and tumour necrosis factor-α (TNF-α) which have opposing actions on fibroblast IGFBP-3 production, and examined their subsequent role in IGF-I mitogenesis. TGF-β1 caused a dose-dependent increase in IGFBP-3 in serum-free fibroblast-conditioned media. TGF-β1 (1 μg/l) resulted in immunoreactive IGFBP-3 levels reaching 286·5 ± 22·4% of control after 20 h, the increase being confirmed by Western ligand blot. TNF-α caused a dose-dependent decrease in fibroblast IGFBP-3 secretion, 1 μg TNG-α/l reducing IGFBP-3 levels to 32·1 ± 11·% of control. This effect was not due to cytotoxicity and was not cell-density-dependent. Fibroblast proliferation was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric cytochemical bioassay. The addition of IGF-I resulted in dose-dependent growth stimulation after 48 h, the effective range being 20–100 μg/l. The IGF-I analogue Long-R3-IGF-I which has little affinity for the IGFBPs was approximately 20-fold more potent in this assay, and was unaffected by exogenous IGFBP-3. While the addition of 1 μg TGF-β1/l to increasing doses of IGF-I resulted in a fourfold decrease in mitogenic sensitivity to the IGF-I, no such effect was seen with Long-R3-IGF-I. Conversely, 1 μg TNF-α/l increased fibroblast IGF-I sensitivity five-fold, an effect not observed with the IGF-I analogue. Such data suggest that endogenous IGFBP-3 inhibits IGF-I bioactivity and that the regulation of IGF mitogenesis by TGF-β1 and TNF-α can occur via local IGFBP modulation. This may represent a mechanism by which complex growth signals are co-ordinated in vivo. Journal of Endocrinology (1993) 137, 151–159