Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes: increased abundance of GLUT1 and GLUT4 glucose transporter proteins

2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.

1990 ◽  
Vol 68 (1) ◽  
pp. 193-198 ◽  
Author(s):  
L. J. Goodyear ◽  
M. F. Hirshman ◽  
P. A. King ◽  
E. D. Horton ◽  
C. M. Thompson ◽  
...  

Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.


1995 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Patricia A. King ◽  
Mary N. Rosholt ◽  
Kenneth B. Storey

One of the critical adaptations for freeze tolerance by the wood frog, Rana sylvatica, is the production of large quantities of glucose as an organ cryoprotectant during freezing exposures. Glucose export from the liver, where it is synthesized, and its uptake by other organs is dependent upon carrier-mediated transport across plasma membranes by glucose-transporter proteins. Seasonal changes in the capacity to transport glucose across plasma membranes were assessed in liver and skeletal muscle of wood frogs; summer-collected (June) frogs were compared with autumn-collected (September) cold-acclimated (5 °C for 3–4 weeks) frogs. Plasma membrane vesicles prepared from liver of autumn-collected frogs showed 6-fold higher rates of carrier-mediated glucose transport than vesicles from summer-collected frogs, maximal velocity (Vmax) values for transport being 72 ± 14 and 12.0 + 2.9 nmol∙mg protein−1∙s−1, respectively (at 10 °C). However, substrate affinity constants for carrier-mediated glucose transport (K1/2) did not change seasonally. The difference in transport rates was due to greater numbers of glucose transporters in liver plasma membranes from autumn-collected frogs. The total number of transporter sites, as determined by cytochalasin B binding, was 8.5-fold higher in autumn than in summer. Glucose transporters in wood frog liver membranes cross-reacted with antibodies to the rat GluT-2 glucose transporter (the mammalian liver isoform), and Western blots further confirmed a large increase in transporter numbers in liver membranes from autumn- versus summer-collected frogs. By contrast with the liver, however, there were no seasonal changes in glucose-transporter activity or numbers in plasma membranes isolated from skeletal muscle. We conclude that an enhanced capacity for glucose transport across liver, but not muscle, plasma membranes during autumn cold-hardening is an important adaptation that anticipates the need for rapid export of cryoprotectant from liver during natural freezing episodes.


1992 ◽  
Vol 288 (1) ◽  
pp. 325-330 ◽  
Author(s):  
S J Vannucci ◽  
H Nishimura ◽  
S Satoh ◽  
S W Cushman ◽  
G D Holman ◽  
...  

Insulin-stimulated glucose transport activity in rat adipocytes is inhibited by isoprenaline and enhanced by adenosine. Both of these effects occur without corresponding changes in the subcellular distribution of the GLUT4 glucose transporter isoform. In this paper, we have utilized the impermeant, exofacial bis-mannose glucose transporter-specific photolabel, 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine (ATB-BMPA) [Clark & Holman (1990) Biochem. J. 269, 615-622], to examine the cell surface accessibility of GLUT4 glucose transporters under these conditions. Compared with cells treated with insulin alone, adenosine in the presence of insulin increased the accessibility of GLUT4 to the extracellular photolabel by approximately 25%, consistent with its enhancement of insulin-stimulated glucose transport activity; the plasma membrane concentration of GLUT4 as assessed by Western blotting was unchanged. Conversely, isoprenaline, in the absence of adenosine, promoted a time-dependent (t1/2 approximately 2 min) decrease in the accessibility of insulin-stimulated cell surface GLUT4 of > 50%, which directly correlated with the observed inhibition of transport activity; the plasma membrane concentration of GLUT4 decreased by 0-15%. Photolabelling the corresponding plasma membranes revealed that these alterations in the ability of the photolabel to bind to GLUT4 are transient, as the levels of both photolabel incorporation and plasma membrane glucose transport activity were consistent with the observed GLUT4 concentration. These data suggest that insulin-stimulated GLUT4 glucose transporters can exist in two distinct states within the adipocyte plasma membrane, one which is functional and accessible to extracellular substrate, and one which is non-functional and unable to bind extracellular substrate. These effects are only observed in the intact adipocyte and are not retained in plasma membranes isolated from these cells when analysed for their ability to transport glucose or bind photolabel.


1992 ◽  
Vol 263 (6) ◽  
pp. R1228-R1234
Author(s):  
A. Takahashi ◽  
M. Sudo ◽  
Y. Minokoshi ◽  
T. Shimazu

Electrical stimulation of the ventromedial hypothalamus (VMH) increased the rate constant of glucose uptake in rat heart and brown adipose tissue (BAT), as measured in vivo by the 2-deoxy-D-[3H]glucose method. The increase in glucose uptake in BAT was abolished by local sympathetic denervation. To analyze the mechanism of this hypothalamic modulation, the effects of VMH stimulation and insulin treatment on the number and dissociation constant (Kd) of glucose transporters in the plasma and microsomal membranes were examined by means of [3H]cytochalasin B binding. VMH stimulation did not alter either the number or Kd value of glucose transporters in plasma and microsomal membranes prepared from heart and BAT, whereas insulin treatment increased the number of glucose transporters in the plasma membranes and decreased those in the microsomal membranes. D-Glucose transport activity was also measured with the same plasma membrane vesicles. An apparent functional activity of transporters was detected to be increased in the heart and BAT plasma membranes after VMH stimulation but not after insulin treatment. These results suggest that VMH stimulation enhances glucose utilization in heart and BAT via sympathetic innervation and that the mechanism by which VMH stimulation increases tissue glucose uptake is different from that of insulin, possibly causing an activation of glucose transporters present in the plasma membrane.


1987 ◽  
Vol 252 (4) ◽  
pp. E441-E453 ◽  
Author(s):  
C. Carter-Su ◽  
K. Okamoto

The ability of glucocorticoids to modify the effect of insulin on glucose transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested (0-2,000 microU/ml). Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in Vmax rather than an increase in Kt of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [3H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [3H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.


1989 ◽  
Vol 257 (2) ◽  
pp. E193-E197 ◽  
Author(s):  
D. B. Jacobs ◽  
G. R. Hayes ◽  
J. A. Truglia ◽  
D. H. Lockwood

To further define the cellular alteration(s) involved in the impaired glucose transport associated with chronic uremia, we examined the concentration and translocation of glucose transport systems in adipocytes isolated from partially nephrectomized uremic rats. Uremic animals, compared with matched controls, had increased blood urea nitrogen and serum insulin, whereas serum glucose was unchanged. In agreement with previous work, 125I-insulin binding to its receptor was unaltered and transport of 2-deoxy-D-glucose was decreased in both the absence (basal) and presence of a maximal (7 nM) insulin concentration by 44 and 35%, respectively. To assess the movement and concentration of glucose transport systems in various membrane fractions prepared from basal and insulin-treated (20 nM) uremic fat cells, the technique of D-glucose-inhibitable cytochalasin B binding was utilized. In plasma membranes isolated from these cells the concentration of glucose transporters was decreased by 16 (P less than 0.01) and 30% (P less than 0.005) in basal and insulin-treated cells, respectively. Concomitantly, microsomal membranes prepared from uremic cells treated in the absence and presence of insulin had a 28 (P less than 0.01) and 15% (P less than 0.05) decrease in concentration of glucose transport systems, respectively. Additionally, glucose transporter concentration was significantly decreased by 17% (P less than 0.025) in total membranes prepared from uremic cells. Thus, impairment of glucose transport in uremic fat cells can be attributed to a postbinding defect that, at least in part, results from a decrease in the total concentration of glucose transporters.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 284 (2) ◽  
pp. 341-348 ◽  
Author(s):  
D Dimitrakoudis ◽  
T Ramlal ◽  
S Rastogi ◽  
M Vranic ◽  
A Klip

The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of glycaemia.


1993 ◽  
Vol 290 (3) ◽  
pp. 913-919 ◽  
Author(s):  
R J Sargeant ◽  
M R Pâquet

The effect of continuous insulin stimulation on the rates of turnover and on the total cellular contents of the glucose-transporter proteins GLUT1 and GLUT4 in 3T3-L1 adipocytes was investigated. Pulse-and-chase studies with [35S]methionine followed by immunoprecipitation of GLUT1 and GLUT4 with isoform-specific antibodies revealed the half-lives of these proteins to be 19 h and 50 h respectively. Inclusion of 100 nM insulin in the chase medium resulted in a decrease in the half-lives of both proteins to about 15.5 h. This effect of insulin was specific for the glucose-transporter proteins, as the average half-life of all proteins was found to be 55 h both with and without insulin stimulation. The effect of insulin on the rate of synthesis of the glucose transporters was determined by the rate of incorporation of [35S]methionine. After 24 h of insulin treatment, the rate of synthesis of GLUT1 and GLUT4 were elevated over control levels by 3.5-fold and 2-fold respectively. After 72 h of treatment under the same conditions, the rate of synthesis of GLUT1 remained elevated by 2.5-fold, whereas the GLUT4 synthesis rate was not different from control levels. Western-blot analysis of total cellular membranes revealed a 4.5-fold increase in total cellular GLUT1 content and a 50% decrease in total cellular GLUT4 after 72 h of insulin treatment. These observations suggest that the rates of synthesis and degradation of GLUT1 and GLUT4 in 3T3-L1 adipocytes are regulated independently and that these cells respond to prolonged insulin treatment by altering the metabolism of GLUT1 and GLUT4 proteins in a specific manner.


1994 ◽  
Vol 107 (3) ◽  
pp. 487-496 ◽  
Author(s):  
I. Guillet-Deniau ◽  
A. Leturque ◽  
J. Girard

Skeletal muscle regeneration is mediated by the proliferation of myoblasts from stem cells located beneath the basal lamina of myofibres, the muscle satellite cells. They are functionally indistinguishable from embryonic myoblasts. The myogenic process includes the fusion of myoblasts into multinucleated myotubes, the biosynthesis of proteins specific for skeletal muscle and proteins that regulates glucose metabolism, the glucose transporters. We find that three isoforms of glucose transporter are expressed during foetal myoblast differentiation: GLUT1, GLUT3 and GLUT4; their relative expression being dependent upon the stage of differentiation of the cells. GLUT1 mRNA and protein were abundant only in myoblasts from 19-day-old rat foetuses or from adult muscles. GLUT3 mRNA and protein, detectable in both cell types, increased markedly during cell fusion, but decreased in contracting myotubes. GLUT4 mRNA and protein were not expressed in myoblasts. They appeared only in spontaneously contracting myotubes cultured on an extracellular matrix. Insulin or IGF-I had no effect on the expression of the three glucose transporter isoforms, even in the absence of glucose. The rate of glucose transport, assessed using 2-[3H]deoxyglucose, was 2-fold higher in myotubes than in myoblasts. Glucose deprivation increased the basal rate of glucose transport by 2-fold in myoblasts, and 4-fold in myotubes. The cellular localization of the glucose transporters was directly examined by immunofluorescence staining. GLUT1 was located on the plasma membrane of myoblasts and myotubes. GLUT3 was located intracellularly in myoblasts and appeared also on the plasma membrane in myotubes. Insulin or IGF-I were unable to target GLUT3 to the plasma membrane. GLUT4, the insulin-regulatable glucose transporter isoform, appeared only in contracting myotubes in small intracellular vesicles. It was translocated to the plasma membrane after a short exposure to insulin, as it is in skeletal muscle in vivo. These results show that there is a switch in glucose transporter isoform expression during myogenic differentiation, dependent upon the energy required by the different stages of the process. GLUT3 seemed to play a role during cell fusion, and could be a marker for the muscle's ability to regenerate.


1990 ◽  
Vol 126 (1) ◽  
pp. 99-107 ◽  
Author(s):  
S. Matthaei ◽  
H. Benecke ◽  
H. H. Klein ◽  
A. Hamann ◽  
G. Kreymann ◽  
...  

ABSTRACT To examine the cellular mechanism responsible for impaired insulin action in ageing, we determined various in-vitro parameters involved in the pathogenesis of insulin resistance, i.e. basal and insulin-stimulated [14C]3-O-methylglucose transport (30MG), 125I-labelled insulin binding, activation of insulin receptor kinase (IRKA) in intact cells, and number and subcellular distribution of glucose transporters in subcellular membrane fractions of adipocytes from 6- (FR-6) and 24- (FR-24) month-old Fischer rats. Ageing had no effect on basal 30MG (12±4 vs 13±3 fmol/5 × 104 cells, means ± s.e.m.); in contrast, in FR-24 rats insulin-stimulated 30MG was markedly decreased by 43% when compared with that in FR-6 rats (158±14 vs 90±8 fmol/5 × 104 cells; P < 0·01). Insulin binding to adipocytes from FR-6 rats was 2·40±0·38% compared with 2·28±0·47% in FR-24 (P not significant). Moreover, ageing had no significant effect on IRKA, as determined by insulin-stimulated (0, 1, 4 and 500 ng insulin/ml) 32P-incorporation into histone 2B. In subcellular membrane fractions, low density microsomes and plasma membranes, glucose transporter numbers were determined using [3H]cytochalasin B binding and immunodetection using an antiserum against the C-terminal peptide of the hepatoma-G2-glucose transporter. Cytochalasin B binding revealed that in the basal state the intracellular pool of glucose transporters was depleted in FR-24 by about 39% compared with low density microsomes from FR-6: (48·6±7·2 vs 29·8±5·5 pmol/mg membrane protein; P < 0·01). In consequence, in FR-24 there were fewer glucose transporters available for insulin-induced translocation to the plasma membrane (insulin-treated plasma membrane: 23·9±4·2 (FR-6) vs 14·4±3·1 (FR-24) pmol/mg membrane protein; P < 0·01). These results were confirmed by immunoblotting. In conclusion, (1) maximal insulin-stimulated 30MG was decreased by 43% in cells from FR-24 rats compared with those from FR-6 rats, while basal 30MG was similar in both groups, (2) neither insulin binding nor IRKA were significantly altered in cells from FR-24 rats, and (3) impaired insulin-stimulated 30MG was associated with reduced numbers of glucose transporters in the plasma membrane as a consequence of a depletion of the intracellular pool of glucose transporters in cells from FR-24 rats. Journal of Endocrinology (1990) 126, 99–107


Sign in / Sign up

Export Citation Format

Share Document