Predicting Vp and constrained modulus reduction curve based on Vs and shear modulus reduction curve in accordance with poroelastic theory

Géotechnique ◽  
2021 ◽  
pp. 1-39
Author(s):  
Chi-Chin Tsai ◽  
Hsing-Wen Liu ◽  
Domniki Asimaki

The compression wave velocity (Vp) of sediments plays a key role in seismic wave amplification of vertical motion and is required in site response analysis. However, such information is usually lacking during field exploration (e.g., surface wave method) because only shear wave velocity (Vs) is obtained. This study aims to predict Vp based on Vs empirically and theoretically, especially focusing on saturated conditions. The empirical approach is to establish the Vp correlation dependency on Poisson's ratio and Vs, and the theoretical approach is based on poroelastic theory that accounts for the interaction between fluid and soil skeleton. The Engineering Geological Database for the Taiwan Strong Motion Instrumentation Program and the Kiban Kyoshin Network database in Japan are adopted to establish an empirical model and validate poroelastic theory. The validated poroelastic approach is used to develop a constrained modulus reduction curve dependency on the porosity, Vs, Poisson's ratio, and degree of saturation with a shear modulus reduction curve. The proposed approach can be used to develop generic Vp profiles and constrained modulus reduction curves for the site response to vertical motion given a site specific Vs profile.

Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. B51-B65 ◽  
Author(s):  
Klaas Verwer ◽  
Hendrik Braaksma ◽  
Jeroen A. Kenter

More than 250 plugs from outcrops and three nearby boreholes in an undisturbed reef of Miocene (Tortonian) age were quantitatively analyzed for texture, mineralogy, and acoustic properties. We measured the P- and S-waves of carbonate rocks under dry (humidified) and brine-saturated conditions at [Formula: see text] effective pressure with an ultrasonic pulse transmission technique [Formula: see text]. The data set was compared with an extensive database of petrophysical measurements of a variety of rock types encountered in carbonate sedimentary sequences. Two major textural groups were distinguished on the basis of trends in plots of compressional-wave velocity versus Poisson’s ratio (a specific ratio of P-wave over S-wave velocity). In granular rocks, the framework of depositional grains is the main medium for acoustic-wave propagation; in crystalline rocks, this medium is provided by a framework of interlocking crystals formed during diagenesis. Rock textures are connected to primary depositionalparameters and a diagenetic overprint through the specific effects on Poisson’s ratio. Calculating acoustic velocities using Gassmann fluid substitution modeling approximates measured saturated velocities for 55% of the samples (3% error tolerance); however, it shows considerable errors because shear modulus changes with saturation. Introducing brine into the pore space may decrease the shear modulus of the rock by approximately [Formula: see text] or, alternatively, increase it by approximately [Formula: see text]. This change in shear modulus is coupled with the texture of the rock. In granular carbonates, the shear modulus decreases; in crystalline and cemented carbonates, it increases with saturation. The results demonstrate the intimate relationship between elastic behavior and the depositional and diagenetic properties of carbonate sedimentary rocks. The results potentially allow the direct extraction of granular and crystalline rock texture from acoustic data alone and may help predict rock types from seismic data and in wells.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3200-3213
Author(s):  
Wei Wang ◽  
Yancai Cao ◽  
Liyue Sun ◽  
Mingshuai Wu

A formaldehyde-cellulose amorphous region model at the micro-level was established using the molecular dynamics software Materials Studio to simulate the change of cellulose and formaldehyde molecules in an external temperature field. The diffusion coefficients of formaldehyde molecules increased as the temperature increased. Moreover, the total number of hydrogen bonds decreased, and the interaction energy in the formaldehyde-cellulose model was reduced, which confirmed this conclusion and indicated that temperature increase could enhance the diffusion of formaldehyde in cellulose. The mechanical parameters of cellulose were analyzed in terms of Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio, and the ratio of bulk modulus to shear modulus (K/G), which were affected by the temperature. The elastic modulus (E, G, and K) of cellulose decreased as the temperature increased, while the Poisson’s ratio V and K/G values increased. The results of the research explain how elevated temperature can promote the release of formaldehyde in furniture from a microscopic perspective, which supports each other with the results of previous experimental data and practical applications in production.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ran Bachrach ◽  
Jack Dvorkin ◽  
Amos M. Nur

We determined P- and S-wave velocity depth profiles in shallow, unconsolidated beach sand by analyzing three‐component surface seismic data. P- and S-wave velocity profiles were calculated from traveltime measurements of vertical and tangential component seismograms, respectively. The results reveal two discrepancies between theory and data. Whereas both velocities were found to be proportional to the pressure raised to the power of 1/6, as predicted by the Hertz‐Mindlin contact theory, the actual values of the velocities are less than half of those calculated from this theory. We attribute this discrepancy to the angularity of the sand grains. Assuming that the average radii of curvature at the grain contacts are smaller than the average radii of the grains, we modify the Hertz‐Mindlin theory accordingly. We found that the ratio of the contact radius to the grain radius is about 0.086. The second disparity is between the observed Poisson’s ratio of 0.15 and the theoretical value (0.008 for random pack of quartz spheres). This discrepancy can be reconciled by assuming slip at the grain contacts. Because slip decreases the shearing between grains, Poisson’s ratio increases.


2010 ◽  
Vol 160-162 ◽  
pp. 1691-1698 ◽  
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
Peng Liu ◽  
Xu Liang Deng ◽  
Qing Cai ◽  
...  

This study aimed at investigating the effects of the post material properties on the maximum stress in the root and maximum deformation of the restorative system. Effects of material properties of fiber post on the maximum equivalent stress in the root and the maximum deformation of the restorative system were numerically investigated. Results show that the maximum equivalent stress in the root can be decreased by 8.3% and the maximum deformation of the restorative system decreased by 10% compared with corresponding maximum values if changing Young’s modulus, Shear modulus and Poisson’s ratio in the range studied here. The maximum equivalent stress in the root is more sensitive to Young’s modulus and Poisson’s ratio while the deformation of the restorative system is more seriously affected by the Shear modulus of the post material.


Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Moosa S. M. Al-Kharusi

In the last ten years, a new type of advanced polymer known as swelling elastomer has been extensively used as sealing element in the oil and gas industry. These elastomers have been instrumental in various new applications such as water shutoff, zonal isolation, sidetracking, etc. Though swell packers can significantly reduce costs and increase productivity, their failure can lead to serious losses. Integrity and reliability of swelling-elastomer seals under different field conditions is therefore a major concern. Investigation of changes in material behavior over a specified swelling period is a necessary first step for performance evaluation of elastomer seals. Current study is based on experimental and numerical analysis of changes in compressive and bulk behavior of an elastomeric material due to swelling. Tests and simulations were carried out before and after various stages of swelling. Specimens were placed in saline water (0.6% and 12% concentration) at a temperature of 50°C, total swelling period being one month. Both compression and bulk tests were conducted using disc samples. A small test rig had to be designed and constructed for determination of bulk modulus. Young’s modulus (under compression) and bulk modulus were determined for specimens subjected to different swelling periods. Shear modulus and Poisson’s ratio were calculated using isotropic relations. Experiments were also simulated using the commercial finite element software ABAQUS. Different hyperelastic material models were examined. As Ogden model with second strain energy potential gave the closest results, it has been used for all simulations. The elastomer was a fast-swell type. There were drastic changes in material properties within one day of swelling, under both low and high salinity water. Values of elastic and shear modulus dropped by more than 90% in the first few days, and then remained almost constant during the rest of the one-month period. Poisson’s ratio, as expected, showed a mirror behavior of a sharp increase in the first few days. Bulk modulus exhibited a fluctuating pattern; rapid initial decrease, then a slightly slower increase, followed by a much slower decrease. Salinity shows some notable effect in the first 5 or 6 days, but has almost no influence in the later days. Very interestingly, Poisson’s ratio approaches the limiting value of 0.5 within the first 10 days of swelling, justifying the assumption of incompressibility used in most analytical and numerical models. In general, simulations results are in good agreement with experimental ones.


Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 819-824 ◽  
Author(s):  
Harsh K. Gupta ◽  
Ronald W. Ward ◽  
Tzeu‐Lie Lin

Analysis of P‐ and S‐waves from shallow microearthquakes in the vicinity of The Geysers geothermal area, California, recorded by a dense, telemetered seismic array operated by the U.S. Geological Survey (USGS) shows that these phases are easily recognized and traced on record sections to distances of 80 km. Regional average velocities for the upper crust are estimated to be [Formula: see text] and [Formula: see text] for P‐ and S‐waves, respectively. Poisson’s ratio is estimated at 23 locations using Wadati diagrams and is found to vary from 0.13 to 0.32. In general, the Poisson’s ratio is found to be lower at the locations close to the steam production zones at The Geysers and Clear Lake volcanic field to the northeast. The low Poisson ratio corresponds to a decrease in P‐wave velocity in areas of high heat flow. The decrease may be caused by fracturing of the rock and saturation with gas or steam.


Sign in / Sign up

Export Citation Format

Share Document