scholarly journals Antiangiogenic and Antifibrotic Gene Therapy in a Chronic Infusion Model of Peritoneal Dialysis in Rats

2002 ◽  
Vol 13 (3) ◽  
pp. 721-728 ◽  
Author(s):  
Peter J. Margetts ◽  
Steve Gyorffy ◽  
Martin Kolb ◽  
Lisa Yu ◽  
Catherine M. Hoff ◽  
...  

ABSTRACT. To identify the relative importance of peritoneal fibrosis and angiogenesis in peritoneal membrane dysfunction, adenoviral mediated gene transfer of angiostatin, a recognized angiogenesis inhibitor, and decorin, a transforming growth factor-β–inhibiting proteoglycan, were used in a daily infusion model of peritoneal dialysis. A peritoneal catheter and subcutaneous port were inserted in rats. Five and fourteen d after insertion, adenovirus-expressing angiostatin, decorin, or AdDL70, a null control virus, were administered. Daily infusion of 4.25% Baxter Dianeal was initiated 7 d after catheter insertion and continued until day 35. Three initial doses of lipopolysaccharide were administered on days 8, 10, and 12 to promote an inflammatory response. Net ultrafiltration was used as a measure of membrane function, and peritoneum-associated vasculature and mesenteric collagen content was quantified. Ultrafiltration dysfunction, angiogenesis, and fibrosis were observed in daily infusion control animals. Animals treated with AdAngiostatin demonstrated an improvement in net ultrafiltration (−3.1 versus −7.8 ml for control animals; P = 0.0004) with a significant reduction in vessel density. AdDecorin-treated animals showed a reduction in mesenteric collagen content (1.8 versus 2.9 μg/mg; P = 0.04); however, AdDecorin treatment had no effect on net ultrafiltration. In a rodent model of peritoneal membrane failure, net ultrafiltration was significantly improved and peritoneal-associated blood vessels were significantly reduced by using adenovirus-mediated gene transfer of angiostatin. Decorin, a transforming growth factor-β–inhibiting proteoglycan, reduced collagen content but did not affect net ultrafiltration. Improvement in the function of the peritoneum as a dialysis membrane after treatment with angiostatin has implications for treatment of peritoneal membrane dysfunction seen in patients on long-term dialysis.

2001 ◽  
Vol 12 (10) ◽  
pp. 2029-2039 ◽  
Author(s):  
PETER J. MARGETTS ◽  
MARTIN KOLB ◽  
TOM GALT ◽  
CATHERINE M. HOFF ◽  
TY R. SHOCKLEY ◽  
...  

Abstract. Long-term peritoneal dialysis is limited by physiologic changes in the peritoneum that lead to ultrafiltration failure. To determine the role of profibrotic cytokines in the alteration of peritoneal transport, a rodent model of transforming growth factor-β (TGF-β)-mediated peritoneal fibrosis was established. An adenoviral vector driving the active form of TGF-β1 (AdTGFβ1) was administered intraperitoneally, and peritoneal structure and function were evaluated for 28 d after infection. Seven days after AdTGFβ1 infection, thickening of the peritoneum, with cellular proliferation and increased vascularization, was noted. By day 28, there was persistent thickening and extensive collagen deposition. The mesenteric collagen content was significantly elevated, compared with control adenovirus-treated animals, 21 d after infection (2.9versus1.8 mg hydroxyproline/g tissue,P= 0.006). Blood vessel density, as measured using factor VIII immunohistochemical analyses, was significantly increased from day 4 to day 21 but decreased by day 28. Animals infected with AdTGFβ1 demonstrated increased transport of solutes and decreased net ultrafiltration, which was maximal on day 7 and returned to baseline levels by day 28. It was demonstratedin vitroandin vivothat TGF-β1 induced production of vascular endothelial growth factor. Overexpression of TGF-β1 after adenovirus-mediated gene transfer causes peritoneal fibrosis, neoangiogenesis, and increased peritoneal membrane solute transport. This model should allow further delineation of the relative contributions of profibrotic and angiogenic cytokines to changes in peritoneal function and may lead to potential new interventions for peritoneal membrane failure.


2006 ◽  
Vol 26 (5) ◽  
pp. 547-558 ◽  
Author(s):  
Catherine M. Hoff ◽  
Peter J. Margetts

Background Peritoneal membrane research has provided important insights into the physiology and pathophysiology of this tissue that is of vital importance for peritoneal dialysis patients. Among the various tools and methodologies used to study the peritoneum, we have extensively used adenovirus-mediated gene transfer. Methods A literature review was carried out. Information from reviewed papers was combined with the authors’ experience and results. Results We have used first-generation adenoviruses that are simple to construct and can infect a wide range of dividing and nondividing cell types. These vectors are restricted, however, in that they provide only a short duration of transgene expression and may elicit an inflammatory response. Modifications to this technology with helper-dependent adenovirus may circumvent these problems but with increased complexity of construction. Adenovirus-mediated gene transfer has been used to evaluate the effect of several cytokines and growth factors on peritoneal membrane physiology. We have used intraperitoneal delivery of transforming growth factor-β to generate an experimental model system of resolving peritoneal fibrosis and epithelial mesenchymal transdifferentiation. We have studied the effects of the inflammatory cytokines interleukin-1β and tumor necrosis factor alpha on the peritoneum, and have shown that antiangiogenic factors such as sFLT-1 and angiostatin can reduce the damaging effects of exposure to peritoneal dialysis solutions in an animal model. Conclusions The use of recombinant adenoviruses to genetically modify cells and tissues is now a common laboratory research tool. This technique has provided important advances in our understanding of the peritoneal membrane.


2005 ◽  
Vol 25 (3_suppl) ◽  
pp. 15-17 ◽  
Author(s):  
Peter J. Margetts ◽  
Kook-Hwan Oh ◽  
Martin Kolb

We have provided evidence from adenovirus-mediated gene transfer to the peritoneum that transforming growth factor-β1 mimics many of the functional and structural changes in the peritoneum in patients on long-term peritoneal dialysis, including fibrosis, increased submesothelial thickness, angiogenesis, increased solute transport, and ultrafiltration dysfunction. We review several key properties of this important fibrogenic molecule.


2001 ◽  
Vol 21 (3_suppl) ◽  
pp. 368-372 ◽  
Author(s):  
Peter J. Margetts ◽  
Martin Kolb ◽  
Lisa Yu ◽  
Catherine M. Hoff ◽  
Jack Gauldie

Objectives Peritoneal membrane changes are related to daily exposure to non physiologic dialysate and recurrent acute inflammation. We modified a daily infusion and inflammation model and evaluated it for fibrotic and angiogenic features. The feasibility of adenovirus-mediated gene transfer in the model was also assessed. Methods Peritoneal catheters were implanted in rats. Over a period of 4 weeks, the animals received a daily infusion of Dianeal 4.25% (Baxter Healthcare Corporation, Deerfield, IL, U.S.A.) with an initial three doses of lipopolysaccharide (LPS) or physiologic saline. Peritoneal fluid was assayed for transforming growth factor beta (TGFβ) and vascular endothelial growth factor (VEGF). Animals were humanely killed at week 5. Net ultrafiltration was then measured, and tissue samples were immunostained for factor VIII. Mesenteric tissue was assayed for hydroxyproline content. Adenovirus-mediated gene transfer of β-galactosidase was assayed by intraperitoneal administration of the virus, 4 days before the end of the experiment. Results Animals treated with either Dianeal or physiologic saline showed peritoneal membrane thickening and increased vascularity. Fibrosis was demonstrated by increased hydroxyproline concentration. Ultrafiltration was impaired. We found increased concentrations of VEGF and TGFβ in the peritoneal fluid of animals treated with LPS and daily infusion. Adenovirus-mediated gene transfer to the peritoneal membrane was demonstrated in the model. Conclusions Exposure to LPS and daily Dianeal or physiologic saline leads to peritoneal fibrosis and neoangiogenesis. Vascularization and glucose transport correlate with ultrafiltration failure. The present animal model mimics changes seen in humans on peritoneal dialysis and may be valuable for evaluating short-term interventions to prevent membrane damage.


2013 ◽  
Vol 33 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Hideki Yokoi ◽  
Masato Kasahara ◽  
Kiyoshi Mori ◽  
Takashige Kuwabara ◽  
Naohiro Toda ◽  
...  

Peritoneal dialysis (PD) solution contains high concentrations of glucose and glucose degradation products (GDPs). One of several GDPs—3,4-dideoxyglucosone-3-ene (3,4-DGE)—was recently identified as the most reactive and toxic GDP in PD fluids. In vitro, 3,4-DGE has been shown to induce mesothelial cell damage; however, its role in peritoneal fibrosis in vivo remains unclear. In the present study, we intraperitoneally administered chlorhexidine gluconate (CG) for mild peritoneal injury, and we then injected 3,4-DGE [38μmol/L (low concentration) or 145μmol/L (high concentration)] 5 times weekly for 4 weeks. Significant thickening of the parietal peritoneal membrane was observed only when treatment with low or high concentrations of 3,4-DGE occurred after CG administration, but not when either CG or 3,4-DGE alone was given. The combination of CG and 3,4-DGE also caused upregulation of messenger RNA expression of transforming growth factor β1, connective tissue growth factor, fibronectin, collagen type 1 α1 chain, alpha smooth muscle actin (α–SMA), vascular endothelial growth factor 164, NADPH oxidase 1 and 4, p22phox, p47phox, and gp91phox in peritoneal tissue. Treatment with CG alone was sufficient to cause significant F4/80-positive macrophage infiltration, appearance of α–SMA-positive cells, and vessel formation in the submesothelial layer. Addition of 3,4-DGE markedly enhanced those changes and induced apoptosis, mainly in leukocytes. The concentration of 3,4-DGE in the abdominal cavity declined more rapidly in CG-treated mice than in PBS-treated mice. Peritoneal membrane permeability determined by peritoneal equilibration test showed high transport conditions in peritoneum treated with both CG and 3,4-DGE. These results indicate that, when mild peritoneal damage is already present, 3,4-DGE causes peritoneal thickening and fibrosis, resulting in deterioration of peritoneal membrane function.


2012 ◽  
Vol 28 (8) ◽  
pp. 2015-2027 ◽  
Author(s):  
Peter J. Margetts ◽  
Catherine Hoff ◽  
Limin Liu ◽  
Ron Korstanje ◽  
Louise Walkin ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Annina Kelloniemi ◽  
Jani Aro ◽  
Elina Koivisto ◽  
Heikki Ruskoaho ◽  
Jaana Rysä

Objectives: Transforming-growth-factor β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains largely unknown. The aim of the present study was to characterize the cardiac TSC-22 expression. Methods: Acute pressure overload was accomplished in conscious Sprague-Dawley (SD) rats by intravenous infusion of arginine 8 -vasopressin (AVP, 0.05 μg/kg/min) for 4 hours and subcutaneous infusion of angiotensin II (Ang II, 33 μg/kg/h) with and without Ang II receptor type 1 blocker losartan (400 μg/kg/h) by using osmotic minipumps for 2 weeks. Adenovirus-mediated intramyocardial gene transfer of TSC-22 was performed into left ventricle (LV) of SD rats. Experimental myocardial infarction (MI) was produced by ligation of the left anterior descending coronary artery. Cultured neonatal rat ventricular myocytes (NRVM) were treated with endothelin-1 (ET-1, 100 nM). Results: A significant 1.6-fold increase ( P <0.05) in LV TSC-22 mRNA levels was noted already after 1 hour AVP infusion. Moreover, Ang II infusion markedly upregulated TSC-22 expression, LV mRNA levels being highest at 6 hours (11-fold, P <0.001). Simultaneous infusion of losartan completely abolished Ang II-induced increase in TSC-22 mRNA levels. Adenovirus-mediated gene transfer of TSC-22 into LV resulted a 1.9-fold ( P <0.001) increase in TSC-22 mRNA levels, accompanied by upregulated BNP mRNA levels (1.4-fold, P <0.01). In response to experimental MI, TSC-22 mRNA levels were elevated 4.1-fold ( P <0.001) at 1 day and 1.9-fold ( P <0.05) at 4 weeks. In cultured NRVM, ET-1 treatment increased TSC-22 mRNA levels from 1 h to 24 h, the greatest increase being observed at 12 h (2.7-fold, P <0.001). TSC-22 protein levels were upregulated from 4 h to 24 h with the highest increase at 24 h (4.7-fold, P <0.01). Conclusion: These results indicate that TSC-22 expression is rapidly activated in response to pressure overload, MI and in ET-1 treated cultured NRVM. Moreover, adenovirus-mediated overexpression of TSC-22 mRNA was associated with elevated left ventricular BNP mRNA levels.


2005 ◽  
Vol 28 (2) ◽  
pp. 129-134 ◽  
Author(s):  
K.-H. Oh ◽  
P.J. Margetts

Peritoneal fibrosis is initiated by exposure of peritoneal tissues to numerous harmful agents encountered during peritoneal dialysis. These agents interact with cells within the peritoneum to induce growth factors and cytokines that are important in the initiation, progression and maintenance of fibrosis. Some of the mediators implicated in the pathogenesis of peritoneal fibrosis include transforming growth factor (TGF) ß, connective tissue growth factor (CTGF), fibroblast growth factors (FGF), and platelet derived growth factor (PDGF).


2005 ◽  
Vol 25 (1) ◽  
pp. 8-11 ◽  
Author(s):  
An S. De Vriese

Several conditions in the peritoneal membrane of peritoneal dialysis (PD) patients promote the accumulation of advanced glycation end-products (AGEs), that is, the uremic state, exposure to high glucose concentrations, and exposure to glucose degradation products (GDPs). AGEs exert some of their biologic actions through binding with a cell surface receptor, termed RAGE. Interaction of AGEs with RAGE induces sustained cellular activation, including the production of the fibrogenic growth factor, transforming growth factor-beta (TGF-β). TGF-β is pivotal in the process of epithelial-to-mesenchymal transition, through which cells of epithelial origin acquire myofibroblastic characteristics. Myofibroblasts are involved in virtually all conditions of pathological fibrosis. Submesothelial fibrosis is an important feature in peritoneal biopsies of PD patients, especially of those with clinical problems. We therefore examined the role of RAGE in peritoneal fibrosis, in an animal model of uremia, of high glucose exposure, and of peritoneal dialysate exposure. All three models were characterized by accumulation of AGEs, upregulation of RAGE, and fibrosis. Antagonism of RAGE prevented the upregulation of TGF-β and fibrosis in the peritoneal membrane. We further examined the underlying mechanism of peritoneal fibrosis in the uremic model. Prominent myofibroblast transdifferentiation of mesothelial cells was identified by co-localization of cytokeratin and α-smooth muscle actin in submesothelial and interstitial fibrotic tissue. Antagonism of RAGE prevented conversion of mesothelial cells to myofibroblasts in uremia. In conclusion, we hypothesize that accumulation of AGEs in the peritoneal membrane, as a consequence of the uremic environment, chronic exposure to high glucose, and exposure to GDPs, results in an increased expression of RAGE. The interaction of AGEs with RAGE induces peritoneal fibrosis by virtue of upregulation of TGF-β and subsequent conversion of mesothelial cells into myofibroblasts.


Sign in / Sign up

Export Citation Format

Share Document