Multiple molecular mechanisms for chronic myeloid leukemia progression, but a possible single common origin: the genetic instability

Hématologie ◽  
2014 ◽  
Vol 20 (6) ◽  
pp. 308-318
Author(s):  
Catherine Roche-Lestienne ◽  
François-Xavier Mahon
2006 ◽  
Vol 63 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Milica Strnad ◽  
Goran Brajuskovic ◽  
Natasa Strelic ◽  
Biljana Zivanovic-Todoric ◽  
Ljiljana Tukic ◽  
...  

Background/Aim. Chronic myeloid leukemia (CML) represents a malignant myeloproliferative disease developed out of pluripotent hematopoietic stem cell that contains the fusion bcr-abl gene. Disorders that occur in the process of apoptosis represent one of the possible molecular mechanisms that bring about the disease progress. The aim of our study was to carry out the analysis of the presence of the amplification of the cmyc oncogene, as well as the analysis of the changes in the expression of Bcl-2 in the patients with CML. Methods. Our study included 25 patients with CML (18 in chronic phase, 7 in blast transformation). Using an immunohistochemical alkaline phosphatase-anti-alkaline phosphatase (APAAP) method, we analyzed the expression of cell death protein in the mononuclear bone marrow cells of 25 CML patients. By a differential PCR (polymerase chain reaction) method, we followed the presence of amplified c-myc gene in mononuclear peripheral blood cells. Results. The level of the expression of Bcl-2 protein was considerably higher in the bone marrow samples of the patients undergoing blast transformation of the disease. The amplification of c-myc gene was detected in 30% of the patients in blast transformation of the disease. Conclusion. The expression of Bcl-2 protein and the amplification of c-myc gene are in correlation with the disease progression.


Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 132-152 ◽  
Author(s):  
Junia V. Melo ◽  
Timothy P. Hughes ◽  
Jane F. Apperley

Abstract Chronic myeloid leukemia (CML) was the first human malignancy to be associated with a specific genetic lesion, the Philadelphia chromosome, harboring the BCR-ABL oncogene. Since then, it has become a paradigm for the discovery of molecular mechanisms and targeted therapeutic approaches in the field of hematologic neoplasias. The past 5 years or so have been particularly fruitful in the dissection of the signal transduction pathways abnormally activated in CML and in the translation of this knowledge to clinical practice. In this report, we discuss the biological basis for such translation and highlight the current and potential tools for the effective treatment of CML patients. The first part presents a review of the basic concepts on the biology of CML and their application to the design of targeted therapy. The mechanisms of action of the molecular-specific drugs currently used in clinical trials are discussed, with emphasis on the description of the most promising new compounds that are enhancing the potential for effective alternative or combination chemotherapy in CML. In the following section, we explain how molecular monitoring of response to imatinib mesylate in patients with CML can be used as a guide to clinical management. In particular, we discuss the relative value of regular quantitative RT/PCR and cytogenetic analyses, how responding patients should be monitored and managed, and how to investigate patients who are refractory or become resistant to imatinib treatment. In the last part of this report, a discussion on the possibility of managing CML with patient-specific strategies is presented. We review the current treatment options, highlight the factors impacting on decision making, discuss the range of possibilities for future therapeutic strategies and propose a systematic approach for individualizing treatment for patients in different disease categories.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3391-3391
Author(s):  
Kazuhito Naka ◽  
Takayuki Hoshii ◽  
Yuko Tadokoro ◽  
Takako Ooshio ◽  
Yukio Kondo ◽  
...  

Abstract Abstract 3391 Chronic myeloid leukemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL, a constitutively active tyrosine kinase. Although the development of imatinib, a small molecule inhibitor of ABL, represents a breakthrough in the treatment of CML, major part of patients treated in chronic phase CML are not off therapy due to resistance or intolerance. Recent studies have suggested that imatinib is a potent inhibitor against differentiated leukemia cells, but does not deplete leukemia-initiating cells (LICs) responsible for recurrence of CML. To date, therapeutics that can eradicate CML LICs, however, have remained under investigation. To overcome these clinical problems, here we studied the molecular mechanisms regulating maintenance of imatinib-resistant CML LICs by forkhead transcription factor Foxo3a. We first generated a mouse CML model by using retroviral induction of BCR-ABL-ires-GFP gene into mouse immature hematopoietic cells, and the cells were subsequently transplanted into irradiated recipient mice. These experiments showed that CML LICs were highly enriched in c-Kit+Lin−Sca-1+ (KLS+) population in BCR-ABL+ CML cells. Serial transplantation experiments for CML LICs originated from Foxo3a-deficient mice and littermate wild-type mice indicated that Foxo3a-deficiency reduced lethality of recipient mice at third transplantation. Although recipients that transplanted with wild-type LICs developed CML and acute lymphocytic leukemia (ALL) at third transplantation, we did not observe development of ALL or CML in recipients of Foxo3a deficient LICs after 45 days post-third transplantation, suggesting that the Foxo3a deficient LICs lose their potential to generate malignancies. In addition, a combination of Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo, indicating that Foxo3a plays an essential role for the maintenance of imatinib-resistant CML LICs (Naka et al., Nature 463, 676–680, 2010). Interestingly, when we examined sub-cellular localization of Foxo3a transcription factor in the CML LICs, we found two CML LIC populations; one population was the cells with nuclear localization of Foxo3a (Foxo3a transcription factor is active) and the other population was the cells with cytoplasmic localization of Foxo3a (Foxo3a is inactive). To understand the molecular mechanisms regulating Foxo3a in CML LICs, we next evaluated the activity of upstream BCR-ABL, PI3K, PDK1, and Akt signaling pathway by fluorescence immunohistochemistry. BCR-ABL activity that was determined by phosphorylation levels of CrkL, a down-stream target of BCR-ABL, was detected in almost all of the CML LICs. However, unexpectedly, phosphorylation levels of Akt in the CML LICs with nuclear localization of Foxo3a appeared to be lower than that in the CML LICs with cytoplasmic localization of Foxo3a, despite it is widely believed that BCR-ABL induces activation of Akt signal. Consistent with Akt phosphorylation status, we detected low levels phosphorylation of PDK1 and PI3K p85, upstream regulators for Akt, in the CML LICs with nuclear localization of Foxo3a. Interestingly, expression levels of the cell proliferation antigen Ki67 were lower in the CML LICs with nuclear Foxo3a than that in the CML LICs with cytoplasmic Foxo3a. These results suggest that Foxo3a responsible for maintenance of imatinib-resistant CML LICs may be regulated by molecular mechanisms that are involved in dormancy in CML LICs. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 68 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Jagu Subhashini ◽  
Suraneni V.K Mahipal ◽  
Madhava C Reddy ◽  
Metukuri Mallikarjuna Reddy ◽  
Aparna Rachamallu ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Minran Zhou ◽  
Xiaolin Yin ◽  
Lixin Zheng ◽  
Yue Fu ◽  
Yue Wang ◽  
...  

BackgroundChronic myeloid leukemia (CML) is a malignant clonal proliferative disease. Once it progresses into the phase of blast crisis (CML-BP), the curative effect is poor, and the fatality rate is extremely high. Therefore, it is urgent to explore the molecular mechanisms of blast crisis and identify new therapeutic targets.MethodsThe expression levels of miR-181d, RBP2 and NF-κB p65 were assessed in 42 newly diagnosed CML-CP patients and 15 CML-BP patients. Quantitative real-time PCR, Western blots, and cell proliferation assay were used to characterize the changes induced by overexpression or inhibition of miR-181d, RBP2 or p65. Luciferase reporter assay and ChIP assay was conducted to establish functional association between miR-181d, RBP2 and p65. Inhibition of miR-181d expression and its consequences in tumor growth was demonstrated in vivo models.ResultsWe found that miR-181d was overexpressed in CML-BP, which promoted leukemia cell proliferation. Histone demethylase RBP2 was identified as a direct target of miR-181d which downregulated RBP2 expression. Moreover, RBP2 inhibited transcriptional expression of NF-κB subunit, p65 by binding to its promoter and demethylating the tri/dimethylated H3K4 region in the p65 promoter locus. In turn, p65 directly bound to miR-181d promoter and upregulated its expression. Therefore, RBP2 inhibition resulting from miR-181d overexpression led to p65 upregulation which further forwarded miR-181d expression. This miR-181d/RBP2/p65 feedback regulation caused sustained NF-κB activation, which contributed to the development of CML-BP.ConclusionsTaken together, the miR-181d/RBP2/p65 feedback regulation promoted CML-BP and miR-181d may serve as a potential therapeutic target of CML-BP.


2019 ◽  
Vol Volume 11 ◽  
pp. 5197-5208 ◽  
Author(s):  
Xianbo Huang ◽  
Ying Li ◽  
Lihong Shou ◽  
Li Li ◽  
Zhenzhen Chen ◽  
...  

Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4547-4553 ◽  
Author(s):  
Brian J. P. Huntly ◽  
Anthony J. Bench ◽  
Eric Delabesse ◽  
Alistair G. Reid ◽  
Juan Li ◽  
...  

Deletions of the derivative chromosome 9 have recently been reported in chronic myeloid leukemia. These deletions are large, occur at the time of the Philadelphia (Ph) translocation, span the translocation breakpoint, and represent a powerful prognostic indicator. However, the molecular mechanisms responsible for the poor prognosis associated with deletions are obscure, and several possible models are investigated here. First, we demonstrate that all derivative chromosome 9 deletions detected by fluorescence in situ hybridization were associated with an absence ofABL-BCR expression. However, loss ofABL-BCR expression also occurred without an overt deletion, suggesting the existence of other mechanisms by whichABL-BCR transcription can be abolished. Furthermore, analysis of survival in 160 patients demonstrated that loss ofABL-BCR expression, in contrast to deletion status, was not an indicator of poor prognosis. Second, we addressed the possibility that concomitant small deletions of the Ph chromosome modulateBCR-ABL transcription. Real-time reverse-transcription polymerase chain reaction was used to demonstrate that derivative chromosome 9 deletions were not accompanied by altered levels of BCR-ABL transcripts. Third, deletions may represent a consequence of genetic instability within the target cell at the time of the Ph translocation, with the poor prognosis reflecting a predisposition to subsequent additional genetic alterations. However, patients with deletions do not exhibit an increased frequency of secondary cytogenetic changes following disease progression. Taken together, these data support a model in which deletions of the derivative chromosome 9 result in rapid disease progression as a result of the loss of one or more genes within the deleted region.


2020 ◽  
Author(s):  
Yun Zhang ◽  
Lingyan Wang ◽  
Jiazheng Li ◽  
Peifang Jiang ◽  
Minhui Lin ◽  
...  

Abstract Background: Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 kinase are effective in treating chronic myeloid leukemia (CML), but TKI resistance occurs in a significant number of patients, and the underlying molecular mechanisms of this resistance remain largely unknown. As an oncomiR, microRNA-21(miR-21) functions directly in drug resistance, but its relationship with TKI resistance in CML is rarely reported. As a novel and effective gene editing tool, clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9(CRISPR/Cas9) has certain advantages in completely knocking out target genes at the gene level. Methods: We successfully constructed lentiviruses LV-VMP1-sgRNA (045001) and human chronic myeloid leukemia K562 cells were transducted with them. Single-cell-derived clones were screened for miR-21 deletion by genomic DNA PCR and Sanger sequence. RQ-PCR assays was used to confirm the knockout of miR-21. 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide(MTT) and colony formation assays were applied to assess the cell growth inhibition. Imatinib and dasatinib sensitivity was determined by MTT assay and Annexin-V APC/7-AAD double staining flow cytometry. Western blot assay was performed to measure the levels of Phosphatase and tensin homolog(PTEN), Phosphatidylinositol 3-kinase(PI3K), Serine/threonine Kinase(AKT), p-AKT, BCR-ABL(P210), p-BCR-ABL (p-P210) . Result: miR-21 knockout inhibited proliferation of K562 cells, promoted their apoptosis and increased their sensitivity to dasatinib. Further mechanism studies suggest that this is achieved by inhibiting the PI3K/AKT signaling pathway and destroying BCR-ABL. Conclusions: Our study reveals the efficacy of CRISPR/Cas9 gene editing to miR-21 in K562 and indicates miR-21 as a potential target in sensitizing dasatinib treatment for CML patients with pool response to the TKI targeting therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingjie Qing ◽  
Xiangyuan Wang ◽  
Hongzheng Wang ◽  
Po Hu ◽  
Hui Li ◽  
...  

Abstract Background The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis. This study aimed to investigate the involved molecular mechanisms of wogonin on anti- chronic myeloid leukemia (CML) cells. Materials and methods mRNA and protein levels were analysed by RT-qPCR and western blot. Flow cytometry was used to assess cell differentiation and apoptosis. Cell transfection, immunofluorescence analysis and co-immunoprecipitation (co-IP) assays were applied to address the potential regulatory mechanism of wogonin. KU-812 cells xenograft NOD/SCID mice model was used to assess and verify the mechanism in vivo. Results We reported that the anti-CML effects in K562, KU-812 and primary CML cells induced by wogonin were regulated by P-TEFb complex. We also confirmed the relationship between CDK9 and erythroid differentiation via knockdown the expression of CDK9. For further study the mechanism of erythroid differentiation induced by wogonin, co-IP experiments were used to demonstrate that wogonin increased the binding between GATA-1 and FOG-1 but decreased the binding between GATA-1 and RUNX1, which were depended on P-TEFb. Also, wogonin induced apoptosis and decreased the mRNA and protein levels of MCL-1 in KU-812 cells, which is the downstream of P-TEFb. In vivo studies showed wogonin had good anti-tumor effects in KU-812 xenografts NOD/ SCID mice model and decreased the proportion of human CD45+ cells in spleens of mice. We also verified that wogonin exhibited anti-CML effects through modulating P-TEFb activity in vivo. Conclusions Our study indicated a special mechanism involving the regulation of P-TEFb kinase activity in CML cells, providing evidences for further application of wogonin in CML clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document