scholarly journals Eye Pointing in Stereoscopic Displays

2016 ◽  
Vol 9 (5) ◽  
Author(s):  
Chiuhsiang Joe Lin ◽  
Retno Widyaningrum

This study investigated eye pointing in stereoscopic displays. Ten participants performed 18 tapping tasks in stereoscopic displays with three different levels of parallax (at the screen, 20 cm and 50 cm in front of the screen). The results showed that parallax had significant effects on hand movement time, eye movement time, index of performance in hand click and eye gaze. The movement time was shorter and the performance was better when the target was at the screen, compared to the conditions when the targets were seen at 20 cm and 50 cm in front of the screen. Furthermore, the findings of this study supports that the eye movement in stereoscopic displays follows the Fitts’ law. The proposed algorithm was effective on the eye gaze selection to improve the good fit of eye movement in stereoscopic displays.

1997 ◽  
Vol 85 (2) ◽  
pp. 705-718 ◽  
Author(s):  
Chia-Fen Chi ◽  
Chia-Liang Lin

The current experiment examined the speed-accuracy trade-off of saccadic movement between two targets. Ten subjects looked alternately at two targets as fast and as accurately as possible for 2 min. under different conditions of target size, distance between targets, and direction of eye movement. Saccadic movement of the left eye was tracked and recorded with an infrared eye monitoring device to compute the starting position, ending position, and duration of each saccadic movement. Eye-movement time was significantly related to target size and distance between targets, but the speed-accuracy trade-off was significantly different from that predicted by Fitts' Law. Reaction time was not significantly changed by the direction of eye movement.


Author(s):  
Dev S. Kochhar ◽  
Hatem M. Ali

A study was conducted to investigate the variation in speed of performance and decision making ability with age. The task performed involved decision making, hand movement, and positioning elements. The effects of age on decision and movement time were examined when information load, distance of move, and radial clearance (target width) were varied. In addition, heart rate was also monitored. Significant differences were detected in both decision and movement time for different levels of information load, distance of move, and radial clearance between the older (52 to 63 years) and younger (18 to 29 years) groups of subjects. Decision time differences between the two groups increased at higher levels of information load. The relationship between movement time and index of difficulty suggested that the older worker tends to exhibit a “start-up” lag in exercising movement control. Performance errors indicated that the slowing among the older workers was not observed at the expense of accuracy. The study provided no evidence that age has an effect on heart rate variability under different levels of information load and task difficulty.


2018 ◽  
Vol 11 (6) ◽  
Author(s):  
Chiuhsiang Joe Lin ◽  
Yogi Tri Prasetyo ◽  
Retno Widyaningrum

The current study applied Structural Equation Modeling (SEM) to analyze the relationship among index of difficulty (ID) and parallax on eye movement time (EMT), fixation duration (FD), time to first fixation (TFF), number of fixation (NF), and eye gaze accuracy (AC) simultaneously. EMT, FD, TFF, NF, and AC were measured in the projection-based stereoscopic display by utilizing Tobii eye tracker system. SEM proved that ID had significant direct effects on EMT, NF, and FD also a significant indirect effect on NF. However, ID was found not a strong predictor for AC. SEM also proved that parallax had significant direct effects on EMT, NF, FD, TFF, and AC. Apart from the direct effect, parallax also had significant indirect effects on NF and AC. Regarding the interrelationship among dependent variables, there were significant indirect effects of FD and TFF on AC. Our results concluded that higher AC was achieved by lowering parallax (at the screen), longer EMT, higher NF, longer FD, and longer TF,


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1051
Author(s):  
Si Jung Kim ◽  
Teemu H. Laine ◽  
Hae Jung Suk

Presence refers to the emotional state of users where their motivation for thinking and acting arises based on the perception of the entities in a virtual world. The immersion level of users can vary when they interact with different media content, which may result in different levels of presence especially in a virtual reality (VR) environment. This study investigates how user characteristics, such as gender, immersion level, and emotional valence on VR, are related to the three elements of presence effects (attention, enjoyment, and memory). A VR story was created and used as an immersive stimulus in an experiment, which was presented through a head-mounted display (HMD) equipped with an eye tracker that collected the participants’ eye gaze data during the experiment. A total of 53 university students (26 females, 27 males), with an age range from 20 to 29 years old (mean 23.8), participated in the experiment. A set of pre- and post-questionnaires were used as a subjective measure to support the evidence of relationships among the presence effects and user characteristics. The results showed that user characteristics, such as gender, immersion level, and emotional valence, affected their level of presence, however, there is no evidence that attention is associated with enjoyment or memory.


Author(s):  
Errol R. Hoffmann

Two tasks in which subjects aim at an array of devices were considered: moving to one knob within an array and moving the finger on a numeric keypad. It was shown by a mathematical model based on Fitts' law, that when the array density is specified for the array of knobs or keys, there is an optimum control size for minimum movement time. The theoretical result was obtained by considering a two-element model of the movement, the first being a reach to the general location of the control and the second describing the insertion of the fingers into the space between adjacent controls. As the first element has a movement time that decreases with increase of control size and the second a time increasing with control size, there is an optimum control size where the movement time is a minimum.


Autism ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 730-743 ◽  
Author(s):  
Emma Gowen ◽  
Andrius Vabalas ◽  
Alexander J Casson ◽  
Ellen Poliakoff

This study investigated whether reduced visual attention to an observed action might account for altered imitation in autistic adults. A total of 22 autistic and 22 non-autistic adults observed and then imitated videos of a hand producing sequences of movements that differed in vertical elevation while their hand and eye movements were recorded. Participants first performed a block of imitation trials with general instructions to imitate the action. They then performed a second block with explicit instructions to attend closely to the characteristics of the movement. Imitation was quantified according to how much participants modulated their movement between the different heights of the observed movements. In the general instruction condition, the autistic group modulated their movements significantly less compared to the non-autistic group. However, following instructions to attend to the movement, the autistic group showed equivalent imitation modulation to the non-autistic group. Eye movement recording showed that the autistic group spent significantly less time looking at the hand movement for both instruction conditions. These findings show that visual attention contributes to altered voluntary imitation in autistic individuals and have implications for therapies involving imitation as well as for autistic people’s ability to understand the actions of others.


Author(s):  
Gavindya Jayawardena ◽  
Sampath Jayarathna

Eye-tracking experiments involve areas of interest (AOIs) for the analysis of eye gaze data. While there are tools to delineate AOIs to extract eye movement data, they may require users to manually draw boundaries of AOIs on eye tracking stimuli or use markers to define AOIs. This paper introduces two novel techniques to dynamically filter eye movement data from AOIs for the analysis of eye metrics from multiple levels of granularity. The authors incorporate pre-trained object detectors and object instance segmentation models for offline detection of dynamic AOIs in video streams. This research presents the implementation and evaluation of object detectors and object instance segmentation models to find the best model to be integrated in a real-time eye movement analysis pipeline. The authors filter gaze data that falls within the polygonal boundaries of detected dynamic AOIs and apply object detector to find bounding-boxes in a public dataset. The results indicate that the dynamic AOIs generated by object detectors capture 60% of eye movements & object instance segmentation models capture 30% of eye movements.


Author(s):  
Shang H. Hsu ◽  
Chien C. Huang

The purpose of this study was to investigate the effects of target width, movement direction, movement amplitude, and remote distance on remote positioning performance. Movement time and movement distance ratio were taken as measures of remote positioning performance. It was found that the effects of target width, movement amplitude, and movement direction on the two measures were significant. The effect of remote distance was significant only for movement distance ratio. The magnitude of the effect of target width on movement time was larger than that of movement amplitude; a modification of Fitts' Law was thus proposed. Moreover, there was an interactive effect between target width and movement direction- i.e., movement direction had an effect only when the target width was small. Among the eight movement directions, upward vertical movement was the best for remote positioning. The results shed some light onto the design of remote control user interface.


Sign in / Sign up

Export Citation Format

Share Document