scholarly journals Assessment of in vitro and in vivo Antimicrobial Activity of an Isonitrosomalononitrile Silver(I) Salt

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Colmont M ◽  
Brunel JM

The design and evaluation of antimicrobial activities of an isonitrosomalononitrile silver(I) salt was reported. This highly stable water-soluble silver salt shows Minimum Inhibitory Concentrations (MIC) values ranging from 0.15 to 5 µg/mL towards both sensitive and resistant Gram-positive and negative bacteria. Furthermore, this silver salt has been investigated for its ability to treat a S. aureus infected Galleria mellonella larvae animal model with promising results. Thus, our results demonstrated that 80% of the treated larvae survived after 24h with respect to 10% of the untreated ones, respectively.

2019 ◽  
Vol 15 (1) ◽  
pp. 63-70
Author(s):  
Shiv Dev Singh ◽  
Arvind Kumar ◽  
Firoz Babar ◽  
Neetu Sachan ◽  
Arun Kumar Sharma

Background: Thienopyrimidines are the bioisoster of quinazoline and unlike quinazoline exist in three isomeric forms corresponding to the three possible types annulation of thiophene to the pyrimidine ring viz thieno[2,3-d] pyrimidine, thieno[3,2-d] pyrimidine and thieno[3,4-d]pyrimidine. Heterocyclic containing the thienopyrimidinone moiety exhibits various pronounced activities such as anti-hypertensive, analgesic and anti-inflammatory, antiviral, platelet aggregation inhibitory, antiprotozoal bronchodilatory, phosphodiesterase inhibitory, antihistaminic, antipsychotic and antimicrobial activity. Objective: Synthesis of novel 3(N,N-dialkylamino)alkyl/phenyl substituted thieno[2,3-d]pyrimidinones as H1-anti-histaminic and antimicrobial agents. Methods: A series of 3-[(N,N-dialkylamino)alkyl/phenyl]-2-(1H)thioxo-5,6,7,8-tetrahydrobenzo(b) thieno(2,3-d)pyrimidine-4(3H)-ones[4a-d], their oxo analogous [5a-d] and 3-[(N,N-dialkylamino)alkyl]- 2-chlorophenyl-5,6,7,8-tetrahydrobenzo(b)thieno(2,3-d)pyrimidine- 4 (3H)-ones[6a-d]derivative were synthesized from 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylic acid by nucleophilic substitution of different N,N-dialkyl alkylene/phenylene diamines on activated 3-acylchloride moiety followed by cyclocondensation with carbon disulfide and ethanolic potassium hydroxide to get [4a-d] and in second reaction by condensation with 4-chlorobenzoyl chloride to get [6a-d] by single pot novel innovative route. The oxo analogous [5a-d] were prepared by treating derivatives [4a-d] with potassium permagnate in ethanolic KOH. The synthesized compound were evaluated for H1-antihistaminic and antimicrobial activities. Results: All synthesized compounds exhibited significant H1-antihistaminic activity by in vitro and in vivo screening methods and data were verified analytically and statistically. The compound 4a, 4b, 5a and 5b showed significant H1-antihistaminiic activity than the reference standard chlorpheniramine maleate. The compound 6d, 6c, 5c and 4c exhibited significant antimicrobial activity.


Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.


1959 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Ellicott McConnell ◽  
A. Glenn Richards

Bacillus thuringiensis Berliner produces in vitro a heat-stable, dialyzable substance which is toxic for insects when injected. The same or a similar substance is produced in vivo. The toxic principle is of unknown composition. It is heat-stable, water-soluble, dialyzable, and resistant to low temperatures. It is probably neither a protein nor a lipid. Clearly it is distinct from the heat-labile inclusion bodies and from lecithinase. Growth-curve studies showed that the heat-stable toxin appeared in liver broth cultures during the active growth phase, prior to the formation of spores or inclusion bodies. An attempt to produce the toxic principle from culture media in the absence of bacteria was unsuccessful from sterile inocula both from in vivo and in vitro sources. The LD50 for larvae of Galleria mellonella injected with autoclaved supernatant from a 10-day-old liver broth culture of B. thuringiensis was determined to be 0.00036 ml per larva or 0.002 ml per gram of larvae. Approximately the same level of toxicity was found for another caterpillar, a fly larva, and cockroaches. After larvae of Galleria or Pyrausla have been dead for more than 2 days from infection with B. thuringiensis the bacillus could no longer be recovered. A sublethal amount of the heat-stable toxin injected into old larvae of Galleria delayed emergence of the adults by 30 to 40%. The non-pathogenic Bacillus cereus was found to produce a similar-acting, heat-stable toxin under the same conditions that one is produced by B. thuringiensis.


2020 ◽  
Vol 12 (1) ◽  
pp. 101-109
Author(s):  
H. Algarni ◽  
Ibrahim Alshahrani ◽  
Essam H. Ibrahim ◽  
Refaat A. Eid ◽  
Mona Kilany ◽  
...  

A novel 40P2O5–20Na2O–10Ca(OH)2–20CaCl2–6.0ZnO–2.0BaF2–2.0TiO2 (BGBaFTi) bioglasses is prepared. The reaction of the glasses in SBF solution is characterized by XRD and SEM indicated that the carbonate hydroxyapatite has formed rapidly on the glasses. BGBaFTi bioglasses was tested for its antimicrobial activity, anti-proliferative/cytotoxicity against normal and activated splenic cells in vitro and in vivo. This results showed that BGBaFTi has antimicrobial activities against Gram negative and positive bacteria as well as fungi. We found that the antimicrobial activity of nanoparticles of BGBaFTI is high than the normal powder of it. Moreover BGBaFTi (powder and nanoparticle) with cytotoxic effect on normal splenic cells was investigated. The products of activated splenic cells did not cause any changes in the structure of BGBaFTi. It did not cause any acute cytotoxicity or lysis to RBCs which was not affected by lytic products of immune cells. The bioactivity and biocompatibility of the present glasses use it a good potential candidate in the field of tissue engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amy B. Howell ◽  
Doris H. D'Souza

Pomegranates have been known for hundreds of years for their multiple health benefits, including antimicrobial activity. The recent surge in multidrug-resistant bacteria and the possibility of widespread global virus pandemics necessitate the need for additional preventative and therapeutic options to conventional drugs. Research indicates that pomegranates and their extracts may serve as natural alternatives due to their potency against a wide range of bacterial and viral pathogens. Nearly every part of the pomegranate plant has been tested for antimicrobial activities, including the fruit juice, peel, arils, flowers, and bark. Many studies have utilized pomegranate peel with success. There are various phytochemical compounds in pomegranate that have demonstrated antimicrobial activity, but most of the studies have found that ellagic acid and larger hydrolyzable tannins, such as punicalagin, have the highest activities. In some cases the combination of the pomegranate constituents offers the most benefit. The positive clinical results on pomegranate and suppression of oral bacteria are intriguing and worthy of further study. Much of the evidence for pomegranates’ antibacterial and antiviral activities against foodborne pathogens and other infectious disease organisms comes fromin vitrocell-based assays, necessitating further confirmation ofin vivoefficacy through human clinical trials.


Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

The global health emergency caused by multi-drug resistant bacteria has led to the search for and development of new antimicrobial agents. Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) showing antimicrobial activity against A.baumannii clinical strains (such as Ab177_GEIH-2000 which showed MICs to meropenem and imipenem of 32 µg/ml and 16 µg/ml, respectively as well as belonging to GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585). We then enhanced the time kill curves (in vitro) and in Galleria mellonella survival assays (in vivo) antimicrobial activity of the new lytic phage by combining it with carbapenem antibiotics (meropenem and imipenem). We observed in vitro, an antimicrobial synergistic effect (from 4 log to 7 log CFU/ml) with meropenem plus lytic phage in all combinations analysed (0.1, 1 and 10 MOI of Ab105-2phiΔCI mutant as well as 1/4 and 1/8 MIC of meropenem). Moreover, we had a decrease in bacterial growth of 8 log CFU/ml for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and of 4 log CFU/ml for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) in both MOI 1 and 10. These results were confirmed in in vivo (G. mellonella) obtaining a higher effectiveness in the combination of imipenem and Ab105-2phiΔCI mutant (P<0.05 by Log Rank-Matel Cox test). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to the antibiotics when used to combat multiresistant strains of Acinetobacter baumannii.


2020 ◽  
Vol 71 (2) ◽  
pp. 422-435
Author(s):  
Farag A. El-Essawy ◽  
Abdulrahman I. Alharthi ◽  
Mshari A. Alotaibi ◽  
Nancy E. Wahba ◽  
Nader M. Boshta

A novel series of 3-, 4-substituted, and 3,4-di substituted quinazoline derivatives were prepared via various cyclized regents and most of the newly prepared compounds evaluated for their antimicrobial activities in vitro against Gram-positive, Gram-negative bacterial strains and fungi strains. The structures of the quinazoline derivatives have been confirmed using spectroscopic analyses (IR, NMR, and EI-MS). Some of the synthesized derivatives displayed a moderate antimicrobial activity in comparison with reference drugs, for example compounds 13d, 15a, 17b, 18b, 18d, 25, and 29a-c. Among the synthesized compounds, the pyrimidoqunazoline derivative 6c elicited the highest activity.


Sign in / Sign up

Export Citation Format

Share Document