Effect of high-power ion beams on the surface topography and structure of submicrocrystalline titanium alloy subsurface layers

Author(s):  
M. V. Zhidkov ◽  
A. E. Ligachev ◽  
Yu. R. Kolobov ◽  
G. V. Potemkin ◽  
G. E. Remnev

The study covers the topography and structural phase state of VT1-0 and VT6 submicrocrystalline titanium alloy subsurface layers irradiated by high power pulsed carbon ion beams (ion energy is 250 keV, pulse duration is ~100 ns, pulse current density is 150–200 A/cm2; surface energy density of a single pulse is j ~ 3 J/cm2 when irradiating VT1-0 titanium alloy samples and j ~ 1 J/cm2 when processing VT6 titanium alloy samples; pulse number is 1, 5, 10, and 50). The surface of samples was subjected to preliminary mechanical grinding and polishing before irradiation. It was shown that surface defects are formed on the surface of the alloys after irradiation, namely craters of different shapes and geometries with a diameter from fractions of a micron to 80–100 μm. At the same time, the grain structure in the subsurface layer becomes more homogeneous in terms of grain size and equiaxial properties. The initial state of titanium alloys is characterized by a fairly homogeneous structure with an average grain size of ~0,31 μm for VT1-0 and ~0,9 μm for VT6. After one irradiation pulse, grain growth to 0,54 μm in the transverse direction is observed in the subsurface layer of the VT1-0 alloy (j ~ 3 J/cm2), while grain size decreases to ~ 0,54 μm in the VT6 alloy (j ~ 1 J/cm2). After 50 pulses, the average grain size in the subsurface layer reaches ~2,2 μm for the VT1-0 alloy and ~1,6 μm for VT6. It should be noted that a rather uniform structure with equiaxed grains is formed as early as after treating with 1 high power ion beam pulse.

2021 ◽  
Vol 887 ◽  
pp. 229-234
Author(s):  
Viktor V. Ovchinnikov ◽  
Svetlana V. Yakutina ◽  
Nadezhda V. Uchevatkina

The effect of high-dose aluminum implantation on the structural-phase state of the surface layer of titanium alloy VT6 with a fine structure (average grain size 2.3 μm) on the mechanical and corrosion properties has been investigated. It is shown that, as a result of ion irradiation, polyphase implanted layers based on α-titanium grains are formed, containing an intermetallic Ti3Al phase along the grain boundaries of α-titanium. The modified surface layers are characterized by improved mechanical properties and corrosion resistance. The noted effect is enhanced by the use of preliminary helium implantation with a dose of 1.3 × 1017 ion / cm2.


2013 ◽  
Vol 39 (11) ◽  
pp. 982-985 ◽  
Author(s):  
V. S. Kovivchak ◽  
O. V. Krivozubov ◽  
N. N. Leont’eva ◽  
E. V. Knyazev

2005 ◽  
Vol 906 ◽  
Author(s):  
Alexander Sergeevitch Vanetsev ◽  
Andrei Vladimirovitch Orlov ◽  
Yurii Dmitrievitch Tretyakov

AbstractThe goal of this work was to investigate the capabilities of high-power microwaves in manufacture of small-grained barium cerate ceramics. Having compared the samples sintered in the microwave and the thermal fields, we inferred that the microwave sintering occurs at far higher rates. It is also noteworthy that microwave sintering provides a record-breaking low temperature of barium cerate sintering (900°C). Having studied the effect of a microwave field on the microstructure of sintering products, we found that high-power microwave processing significantly reduces the average grain size of barium cerate ceramics.


2020 ◽  
Vol 303 ◽  
pp. 161-168
Author(s):  
Alisa V. Nikonenko ◽  
Natalya A. Popova ◽  
E.L. Nikonenko ◽  
M.P. Kalashnikov ◽  
I.A. Kurzina

Transmission electron microscopy investigations were carried out to study the structural-phase state of ultra-fine grain (UFG) titanium with the average grain size of ~0.2 μm, implanted with aluminum ions. Implantation was carried out on MEVVA-V.RU ion source at room temperature, exposure time of 5.25 h and ion implantation dosage of 1⋅1018 ion/cm2. UFG-titanium was obtained by a combined multiple uniaxial compaction with rolling in grooved rolls and further annealing at 573 К for 1h. The specimens were investigated before and after implantation at a distance of 70-100 nm from the specimen surface. Concentration profile of aluminum implanted with α-Ti was obtained. It was revealed that the thickness of implanted layer was 200 nm, while maximum aluminum concentration was 70 at.%. Implantation of aluminum into titanium has resulted in formation of the whole number of phases having various crystal lattices, like β-Ti, TiAl3, Ti3Al, TiC and TiO2. The areas of their localization, the sizes, distribution density and volume fractions were determined. Grain distribution functions by their sizes were built, and the average grain size was defined. The paper investigates the influence of implantation on the grain anisotropy factor. It was revealed that implantation leads to the decrease in the average transverse and longitudinal grain size of α-Ti and decrease in the anisotropy factor by three times. The yield stress and contributions of separate strengthening mechanisms before and after implantation were calculated. The implantation has resulted in increase in the yield stress by two times.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5117
Author(s):  
Yanhuai Wang ◽  
Xin Li ◽  
I. V. Alexandrov ◽  
Li Ma ◽  
Yuecheng Dong ◽  
...  

In the present study, the unique bimodal grain size distribution microstructure with the ultrafine substrate and embedded macro grains was fabricated by a traditional hot-rolling process in a novel low-cost Ti-2Fe-0.1B titanium alloy, which possesses a good combination of strength (around 663 MPa) and ductility (around 30%) without any post heat treatment. Meanwhile, the mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy after equal channel angular pressing (ECAP) deformation were studied. Results indicated that the average grain size decreased to 0.24 μm after 4 passes ECAP deformation, which led to the enhancement of tensile strength to around 854 MPa and good ductility to around 15%. In addition, corrosion resistance was also improved after ECAP due to the rapid self-repairing and thicker passivation film. Our study revealed that the novel low-cost titanium alloy after hot-rolling and ECAP could be used instead of Ti-6Al-4V in some industrial applications due to similar mechanical behavior and better corrosion resistance.


2019 ◽  
Vol 60 (5) ◽  
pp. 590-597 ◽  
Author(s):  
M. V. Zhidkov ◽  
A. E. Ligachev ◽  
Yu. R. Kolobov ◽  
G. V. Potemkin ◽  
G. E. Remnev

2005 ◽  
Vol 105 ◽  
pp. 127-132 ◽  
Author(s):  
Philippe Bocher ◽  
Mohammad Jahazi ◽  
Lionel Germain ◽  
Priti Wanjara ◽  
Nathalie Gey ◽  
...  

The presence of hcp regions with grains having relatively close orientations has been reported in commercial near alpha titanium billets (IMI 834, Ti 6246, etc). The size of these textured regions (called macrozones) is significantly larger than the average grain size of the microstructure observed after thermomechanical processing. The elongated shape of these large hcp regions suggests that they are eventually related to large prior b grains that pancaked during the ingot break down process. In this contribution, Orientation Image Microscopy was used to study the relationship between the hcp local microtexture heterogeneities and the prior b orientations. Specifically, the orientations of the primary (equiaxed) ap grains and the secondary (lamellar) as colonies produced after the transformation of the b phase were discriminated from OIM maps. Furthermore, from the as inherited OIM map, it was possible to reconstruct the corresponding b OIM map over large regions. The analysis showed that the large hcp macrozones observed in the as received material are not related to corresponding bcc macrozones. However, within an hcp macrozone, various clusters of b grains with similar orientations can be found. In such coherent regions, randomly orientated b grains were also observed, which could be related to microstructural changes during deformation (continuous dynamic recrystallization) as suggested by hot deformation results.


1991 ◽  
Vol 9 (3) ◽  
pp. 691-698 ◽  
Author(s):  
V. M. Bystritskii ◽  
Yu. A. Glyshko ◽  
A. A. Sinebrjukhov ◽  
A. V. Kharlov

Experimental results are given on high-power ion beams (HPIB) generation in a vacuumspherical focusing diode with self-magnetic insulation, obtained from the nanosecond accelerator PARUS with 0.2-TW power and 60-ns pulse duration for a matched load. When the passive plasma source of the ions was used, the efficiency of the HPIB generationwas measured to be as high as 20% for 700-kV diode voltage and 10-kA/cm2 beam density in the focal plane.The application of a coaxial plasma opening switch (POS) prior to the diode resultedin a factor-of-1.8 increase in the diode power in comparison with a match operation inthe absence of a POS.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1397
Author(s):  
Dayu Shu ◽  
Li Wang ◽  
Qiang Chen ◽  
Yi Yao ◽  
Minghui Li ◽  
...  

The present study evaluated the β recrystallization behavior and deformation microtexture evolution of TB6 titanium alloy (Ti-10V-2Fe-3Al) taking place during isothermal compression. The hot deformation tests were carried out in the temperature range below the β phase transition temperature and spanned a wide strain rate range of 0.0001~1 s−1. Microstructure evolution on β phase, including its recrystallization behavior and microtexture formation, is sensitive to the strain rates, whereas the average grain size of equiaxed α phase exhibits a slight increase with the strain rate decreasing. Moreover, β recrystallization is not homogeneous among the prior β grains, and is characterized by: (I) enriched β sub-grains, (II) sporadically or chain-like distributed recrystallized β grains with a grain size far less than the prior β grains, and (III) wave-shaped β grain boundaries. The β recrystallization is inadequate and its orientation takes on the inheritance characteristic, which makes the β microtexture significant after deformation. At a lower strain rate, the high activity of the {11−2}<111> and {12−3}<111> slip systems induced the crystal rotation around <101>, but such crystal rotation did not destroy the Burgers orientation relationship (BOR), which could be accounted for by the generation of a strong microtexture of <001>//RD. The divergences on β recrystallization fraction, the operation of slip systems, and initial crystal orientations explain the different microtexture components with varied intensities under different deformation conditions.


Sign in / Sign up

Export Citation Format

Share Document