scholarly journals Dromedary Milk Protein Hydrolysates Show Enhanced Antioxidant and Functional Properties

2020 ◽  
Vol 58 (2) ◽  
pp. 147-158
Author(s):  
Olfa Oussaief ◽  
Zeineb Jrad ◽  
Isabelle Adt ◽  
Touhami Khorchani ◽  
Halima El-Hatmi

Research background. Milk protein hydrolysates have received particular attention due to their health-promoting effects. Dromedary milk differs from the milk of other dairy animals in the composition and structure of its protein components, which give it unique properties. The bioactivity and functionality of whole dromedary milk proteins and their enzymatic hydrolysates have not received much attention, hence this study aims to investigate the effect of enzymatic hydrolysis of dromedary milk proteins on their antioxidant activities and functional properties. Experimental approach. Dromedary milk proteins were treated using four proteolytic enzymes (pepsin, trypsin, α-chymotrypsin and papain) and two mixtures of enzymes (pancreatin and pronase). The degree of hydrolysis was measured to verify the hydrolysis of the proteins. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography served to determine the molecular mass distribution of the hydrolysates while reversed phase-high performance liquid chromatography (RP-HPLC) was conducted to explore their hydrophobicity. The antioxidant activities were evaluated using various in vitro tests, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging capacities, iron(III) reducing ability and chelating activity. Besides, functional properties such as solubility, foaming and emulsification were assessed. Results and conclusions. Dromedary milk protein hydrolysates exhibited different degrees of hydrolysis ranging from 17.69 to 41.86 %. Apart from that, the hydrolysates showed different electrophoretic patterns, molecular mass distribution and RP-HPLC profiles demonstrating the heterogeneity of the resulting peptides in terms of molecular mass and polarity. The hydrolysates displayed significantly higher antioxidant capacities than the undigested proteins at all the tested concentrations. Iron(II) chelating activity was the most improved assay after proteolysis and the hydrolysate generated with pancreatin had the highest chelating power. Dromedary milk protein hydrolysates possessed good solubility (>89 %). Further, foaming and emulsifying properties of dromedary milk proteins were enhanced after their proteolysis. These interfacial properties were influenced by the enzymes employed during proteolysis. Novelty and scientific contribution. Enzymatic hydrolysis of dromedary milk proteins is an effective tool to obtain protein hydrolysates with great antioxidant and functional properties. These results suggest that dromedary milk protein hydrolysates could be used as a natural source of antioxidant peptides to formulate functional foods and nutraceuticals.

Author(s):  
Vitor Geniselli da Silva ◽  
Ruann Janser Soares de Castro

Aiming to explore the use of ionic liquids (ILs) not yet described in the literature, this work evaluated the hydrolysis of proteins from chicken viscera using the protease Alcalase modified and unmodified by the IL tetramethylammonium bromide. The protein hydrolysates produced in the presence of the IL presented values of antioxidant activities 40% higher than the hydrolysates obtained without IL. In addition, with the presence of the IL, it was possible to obtain protein hydrolysates from chicken viscera with similar antioxidant activities, compared to the protein hydrolysates produced without IL, using 1/3 of the amount of enzyme.


2011 ◽  
Vol 20 (No. 1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Hrčková ◽  
M. Rusňáková ◽  
J. Zemanovič

Commercial defatted soy flour (DSF) was dispersed in distilled water at pH 7 to prepare 5% aqueous dispersion. Soy protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of the DSF using three different proteases (Flavourzyme 1000 L, No-vozym FM 2.0 L and Alcalase 2.4 L FG). The highest degree of hydrolysis (DH 39.5) was observed in the presence of protease Flavourzyme. SPH were used for measuring functional properties (foaming stability, gelation). Treatment with Flavourzyme improved foaming of proteins of DSF. Foaming stability was low in the presence of Novozym. Proteases treated DSF showed good gelation properties, mainly in the case of treatment with Flavourzyme. SDS-PAGE analysis showed that after enzyme ad-dition to the 5% aqueous dispersion of DSF each enzyme degraded both b-conglycinin and glycinin. In general, the basic polypeptide from glycinin showed the highest resistance to proteolytic activity. The most abundant free amino acids in the hydrolysates were histidine (30%), leucine (24%) and tyrosine (19%) in the case of the treatment with proteases Alcalase and Novozym, and arginine (22.1%), leucine (10.6%) and phenylalanine (12.9%) in the case of the treatment with Flavourzyme.  


2014 ◽  
Vol 707 ◽  
pp. 149-153 ◽  
Author(s):  
Xiao Hu ◽  
Xian Qing Yang ◽  
Lai Hao Li ◽  
Yan Yan Wu ◽  
Wan Ling Lin ◽  
...  

Microalgae protein hydrolysates (MPH) were obtained by enzymatic hydrolysis of defatted microalgae meal using neutral protease. The protein recovery, degree of hydrolysis, and the antioxidant activities of the hydrolysates were investigated. The results demonstrated that hydrolysates prepared by neutral protease at 50 °C for 4 h exhibited the strongest antioxidant activity. Under these conditions, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity and the reducing power of the hydrolysates were 68.3%, 50.8% and 1.303, respectively.


2012 ◽  
Vol 554-556 ◽  
pp. 1327-1331
Author(s):  
Li Jun Zhang ◽  
Qian Cheng Zhao ◽  
Bing Bing Wang ◽  
Xue Wan ◽  
Zhi Bo Li ◽  
...  

Protein hydrolysates from Tuna frame (TFPH) and Pollock frame (PFPH) were prepared by papain, respectively.The yield, the basic composition content, the antioxidant activity and functional properties (solubility, emulsifying and foaming ability) and the degree of hydrolysis of the protein hydrolysates were evaluated. Results suggest that solubility, antioxidant activity of protein hydrolysate from Pollock frame are better than that of tuna frame, but the yield is lower than that of tuna frame.


2012 ◽  
Vol 134 (3) ◽  
pp. 1360-1367 ◽  
Author(s):  
Qiang Zhao ◽  
Hua Xiong ◽  
Cordelia Selomulya ◽  
Xiao Dong Chen ◽  
Honglan Zhong ◽  
...  

1979 ◽  
Vol 46 (2) ◽  
pp. 369-376 ◽  
Author(s):  
Charles V. Morr

SUMMARYThe modern food-processing industry is placing more and more emphasis upon the utilization of protein ingredients to provide specific functional properties to a wide range of formulated foods. Isolated milk protein products represent an important and valuable source of protein ingredients due to their recognized superior nutritional, organoleptic and functional properties. This paper provides up-to-date information on the quantities, production processes, composition, general properties, and specific functional properties of the major milk protein products, e.g. caseinates, co-precipitates, lactalbumin, whey protein concentrates and milk blends. The subject of chemical and enzymic modification to improve certain functional properties of milk proteins is considered briefly.


Sign in / Sign up

Export Citation Format

Share Document