Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials

2018 ◽  
Vol 118 (9) ◽  
pp. 69 ◽  
Author(s):  
D. D. Namestnikova ◽  
R. T. Tairova ◽  
K. K. Sukhinich ◽  
E. A. Cherkashova ◽  
I. L. Gubskiy ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar Reis ◽  
Michael Wilkinson ◽  
Haley Reis ◽  
Onat Akyol ◽  
Vadim Gospodarev ◽  
...  

Neural stem cells (NSCs) offer a potential therapeutic benefit in the recovery from ischemic stroke. Understanding the role of endogenous neural stem and progenitor cells under normal physiological conditions aids in analyzing their effects after ischemic injury, including their impact on functional recovery and neurogenesis at the site of injury. Recent animal studies have utilized unique subsets of exogenous and endogenous stem cells as well as preconditioning with pharmacologic agents to better understand the best situation for stem cell proliferation, migration, and differentiation. These stem cell therapies provide a promising effect on stimulation of endogenous neurogenesis, neuroprotection, anti-inflammatory effects, and improved cell survival rates. Clinical trials performed using various stem cell types show promising results to their safety and effectiveness on reducing the effects of ischemic stroke in humans. Another important aspect of stem cell therapy discussed in this review is tracking endogenous and exogenous NSCs with magnetic resonance imaging. This review explores the pathophysiology of NSCs on ischemic stroke, stem cell therapy studies and their effects on neurogenesis, the most recent clinical trials, and techniques to track and monitor the progress of endogenous and exogenous stem cells.


2020 ◽  
Vol 12 ◽  
Author(s):  
Joy Q. He ◽  
Eric S. Sussman ◽  
Gary K. Steinberg

Stroke is the leading cause of serious long-term disability, significantly reducing mobility in almost half of the affected patients aged 65 years and older. There are currently no proven neurorestorative treatments for chronic stroke. To address the complex problem of restoring function in ischemic brain tissue, stem cell transplantation-based therapies have emerged as potential restorative therapies. Aligning with the major cell types found within the ischemic brain, stem-cell-based clinical trials for ischemic stroke have fallen under three broad cell lineages: hematopoietic, mesenchymal, and neural. In this review article, we will discuss the scientific rationale for transplanting cells from each of these lineages and provide an overview of published and ongoing trials using this framework.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18668-18680 ◽  
Author(s):  
Hugh H. Chan ◽  
Connor A. Wathen ◽  
Ming Ni ◽  
Shuangmu Zhuo

We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.


2021 ◽  
Author(s):  
Wonjae Lee ◽  
Zhonlin Lyu ◽  
Jon Park ◽  
Kwang-Min Kim ◽  
Hye-jin Jin ◽  
...  

Abstract Stem cell therapy is emerging as a promising treatment option to restore a neurological function after ischemic stroke. Despite the growing number of candidate stem cell types, each with unique characteristics, there is a lack of experimental platform to systematically evaluate their neurorestorative potential. When stem cells are transplanted into ischemic brain, the therapeutic efficacy primarily depends on the response of the neurovascular unit (NVU) to these extraneous cells. In this work, we developed an ischemic stroke microphysiological system (MPS) with a functional NVU on a microfluidic chip. Our new chip design facilitated the incorporated cells to form a functional blood-brain barrier (BBB) and restore their in vivo-like behaviors in both healthy and ischemic conditions. We utilized this MPS to track the transplanted stem cells and characterize their neurorestorative behaviors reflected in gene expression levels. Each type of stem cells showed unique neurorestorative effects, primarily through supporting the endogenous recovery, rather than through direct cell replacement. And the recovery of synaptic activities, critical for neurological function, was more tightly correlated with the recovery of the structural and functional integrity in NVU, rather than with the regeneration of neurons itself.


Author(s):  
Guoyang Zhou ◽  
Yongjie Wang ◽  
Shiqi Gao ◽  
Xiongjie Fu ◽  
Yang Cao ◽  
...  

Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.


2018 ◽  
Vol 24 (28) ◽  
pp. 3332-3340 ◽  
Author(s):  
Kyeong-Ah Kwak ◽  
Ho-Beom Kwon ◽  
Joo Won Lee ◽  
Young-Seok Park

Stroke is a leading cause of death and disability worldwide. Conventional treatment has a limitation of very narrow therapeutic time window and its devastating nature necessitate a novel regenerative approach. Transplanted stem cells resulted in functional recovery through multiple mechanisms including neuroprotection, neurogenesis, angiogenesis, immunomodulation, and anti-inflammatory effects. Despite the promising features shown in experimental studies, results from clinical trials are inconclusive from the perspective of efficacy. The present review presents a synopsis of stem cell research on ischemic stroke treatment according to cell type. Clinical trials to the present are briefly summarized. Finally, the hurdles and issues to be solved are discussed for clinical application.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Peter A. Walker ◽  
Matthew T. Harting ◽  
Shinil K. Shah ◽  
Mary-Clare Day ◽  
Ramy El Khoury ◽  
...  

Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrow-derived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials.


Sign in / Sign up

Export Citation Format

Share Document