scholarly journals Progenitor Cell Therapy for the Treatment of Central Nervous System Injury: A Review of the State of Current Clinical Trials

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Peter A. Walker ◽  
Matthew T. Harting ◽  
Shinil K. Shah ◽  
Mary-Clare Day ◽  
Ramy El Khoury ◽  
...  

Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrow-derived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials.

RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18668-18680 ◽  
Author(s):  
Hugh H. Chan ◽  
Connor A. Wathen ◽  
Ming Ni ◽  
Shuangmu Zhuo

We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.


Spinal Cord ◽  
2020 ◽  
Vol 58 (12) ◽  
pp. 1235-1248
Author(s):  
M. J. Mulcahey ◽  
Linda A. T. Jones ◽  
Frank Rockhold ◽  
Rϋediger Rupp ◽  
John L. K. Kramer ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Gregory E. Tullis ◽  
Kathleen Spears ◽  
Mark D. Kirk

The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer’s disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is the immune response faced by stem cell transplants. Here, we focus on immunological and related hurdles to stem cell therapies for central nervous system disorders.


2009 ◽  
Vol 5 (3) ◽  
pp. 283-300 ◽  
Author(s):  
Peter A. Walker ◽  
Kevin R. Aroom ◽  
Fernando Jimenez ◽  
Shinil K. Shah ◽  
Matthew T. Harting ◽  
...  

Neurosurgery ◽  
2020 ◽  
Vol 87 (4) ◽  
pp. E456-E472
Author(s):  
Richard D Bartlett ◽  
Sarah Burley ◽  
Mina Ip ◽  
James B Phillips ◽  
David Choi

Abstract Cell therapies have the potential to revolutionize the treatment of spinal cord injury. Basic research has progressed significantly in recent years, with a plethora of cell types now reaching early-phase human clinical trials, offering new strategies to repair the spinal cord. However, despite initial enthusiasm for preclinical and early-phase clinical trials, there has been a notable hiatus in the translation of cell therapies to routine clinical practice. Here, we review cell therapies that have reached clinical trials for spinal cord injury, providing a snapshot of all registered human trials and a summary of all published studies. Of registered trials, the majority have used autologous cells and approximately a third have been government funded, a third industry sponsored, and a third funded by university or healthcare systems. A total of 37 cell therapy trials have been published, primarily using stem cells, although a smaller number have used Schwann cells or olfactory ensheathing cells. Significant challenges remain for cell therapy trials in this area, including achieving stringent regulatory standards, ensuring appropriately powered efficacy trials, and establishing sustainable long-term funding. However, cell therapies hold great promise for human spinal cord repair and future trials must continue to capitalize on the exciting developments emerging from preclinical studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar Reis ◽  
Michael Wilkinson ◽  
Haley Reis ◽  
Onat Akyol ◽  
Vadim Gospodarev ◽  
...  

Neural stem cells (NSCs) offer a potential therapeutic benefit in the recovery from ischemic stroke. Understanding the role of endogenous neural stem and progenitor cells under normal physiological conditions aids in analyzing their effects after ischemic injury, including their impact on functional recovery and neurogenesis at the site of injury. Recent animal studies have utilized unique subsets of exogenous and endogenous stem cells as well as preconditioning with pharmacologic agents to better understand the best situation for stem cell proliferation, migration, and differentiation. These stem cell therapies provide a promising effect on stimulation of endogenous neurogenesis, neuroprotection, anti-inflammatory effects, and improved cell survival rates. Clinical trials performed using various stem cell types show promising results to their safety and effectiveness on reducing the effects of ischemic stroke in humans. Another important aspect of stem cell therapy discussed in this review is tracking endogenous and exogenous NSCs with magnetic resonance imaging. This review explores the pathophysiology of NSCs on ischemic stroke, stem cell therapy studies and their effects on neurogenesis, the most recent clinical trials, and techniques to track and monitor the progress of endogenous and exogenous stem cells.


2020 ◽  
Vol 60 (1) ◽  
pp. 291-309 ◽  
Author(s):  
Jesse A. Stokum ◽  
Volodymyr Gerzanich ◽  
Kevin N. Sheth ◽  
W. Taylor Kimberly ◽  
J. Marc Simard

Cerebral edema, a common and often fatal companion to most forms of acute central nervous system disease, has been recognized since the time of ancient Egypt. Unfortunately, our therapeutic armamentarium remains limited, in part due to historic limitations in our understanding of cerebral edema pathophysiology. Recent advancements have led to a number of clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. In this review, we discuss these agents, their targets, and the data supporting their use, with a focus on agents that have progressed to clinical trials.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


Sign in / Sign up

Export Citation Format

Share Document