scholarly journals Dental stem cells and their application in dentistry.

2020 ◽  
Vol 9 (3) ◽  
pp. 220-233
Author(s):  
Heber Arbildo-Vega ◽  
◽  
Fredy Cruzado-Oliva ◽  
Edward Infantes-Ruiz ◽  
◽  
...  

Recent advances in tissue engineering and regenerative medicine offer a long-term solution through biological repair, replacement of damaged teeth or maintenance and improvement of tissue and organ function through the use of stem cells. Stem cells or also called universal cells, progenitor cells or precursor cells; they are primitive, undifferentiated, clonogenic cells that are characterized by their self-renewal capabilities and that can be differentiated into more specialized cells with specific functions. Currently many sources are known from where you can obtain stem cells, one of which are those obtained from oral or dental tissues, called dental stem cells (DSC), from where it has been possible to identify, isolate and characterize around 8 unique populations: dental pulp stem cells (DPSC), human exfoliated deciduous tooth stem cells (SHED), periodontal ligament stem cells (PLDSC), dental follicle stem cells (DFSC), stem cells derived from bone alveolar (CMHA), the stem cells of the apical papilla (SCAP), the stem cells of the dental germ (DGSC) and the gingival stem cells (GSC). These DSC have attracted attention in recent years due to their accessibility, plasticity and high proliferation capacity. Currently, DSC have shown that they can be used in endodontic and periodontal regenerative therapy, in the regeneration of dentin and bone and in dental bioengineering. Tissue engineering methodologies combined with a greater understanding of the biology of DSCs will provide powerful tools for a broader spectrum of their application in various future therapeutic strategies.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Jessica Ratajczak ◽  
Annelies Bronckaers ◽  
Yörg Dillen ◽  
Pascal Gervois ◽  
Tim Vangansewinkel ◽  
...  

Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Young-Bum Son ◽  
Young-Hoon Kang ◽  
Hyeon-Jeong Lee ◽  
Si-Jung Jang ◽  
Dinesh Bharti ◽  
...  

Abstract Background The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ß-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ß-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. Methods Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation. Then 17ß-estradiol supplementation of 0 and 10 µM was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. Results All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ß-estradiol (E2). Conclusions Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation.


2017 ◽  
Vol 8 ◽  
pp. 204173141770253 ◽  
Author(s):  
Elna Paul Chalisserry ◽  
Seung Yun Nam ◽  
Sang Hyug Park ◽  
Sukumaran Anil

Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.


2009 ◽  
Vol 9 ◽  
pp. 1167-1177 ◽  
Author(s):  
Vladimir Petrovic ◽  
Vladisav Stefanovic

Stem cells have been isolated from many tissues and organs, including dental tissue. Five types of dental stem cells have been established: dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. The main characteristics of dental stem cells are their potential for multilineage differentiation and self-renewal capacity. Dental stem cells can differentiate into odontoblasts, adipocytes, neuronal-like cells, glial cells, osteoblasts, chondrocytes, melanocytes, myotubes, and endothelial cells. Possible application of these cells in various fields of medicine makes them good candidates for future research as a new, powerful tool for therapy. Although the possible use of these cells in therapeutic purposes and tooth tissue engineering is still in the beginning stages, the results are promising. The efforts made in the research of dental stem cells have clarified many mechanisms underlying the biological processes in which these cells are involved. This review will focus on the new findings in the field of dental stem cell research and on their potential use in the therapy of various disorders.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2558
Author(s):  
Mihaela Olaru ◽  
Liliana Sachelarie ◽  
Gabriela Calin

With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maurizio Bossù ◽  
Andrea Pacifici ◽  
Daniele Carbone ◽  
Gianluca Tenore ◽  
Gaetano Ierardo ◽  
...  

In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.


2004 ◽  
Vol 83 (7) ◽  
pp. 523-528 ◽  
Author(s):  
M.T. Duailibi ◽  
S.E. Duailibi ◽  
C.S. Young ◽  
J.D. Bartlett ◽  
J.P. Vacanti ◽  
...  

The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.


2015 ◽  
Vol 88 (4) ◽  
pp. 479-482 ◽  
Author(s):  
Monica Angela Maxim ◽  
Olga Soritau ◽  
Mihaela Baciut ◽  
Simion Bran ◽  
Grigore Baciut

Mesenchymal stem cells (MSCs) are adult stem cells that have the capacity of rising multiple cell types.A rich source of mesenchymal stem cells is represented by the dental tissues: the periodontal ligament, the dental pulp, the apical papilla, the dental follicle and the deciduous teeth.The aim of this review is to characterize the main dental- derived mesenchymal stem cell population, and to show their important role in tissue regeneration based on their properties : the multi-potency, the high proliferation rate, the differentiation in multiple cell lineages, the high cell viability and the positive expression for mesenchymal cell markers.Tissue regeneration or de novo' formation of craniofacial structures is the future of regenerative medicine, offering a solution for congenital malformations, traumas and other diseases. 


2019 ◽  
Vol 7 (5) ◽  
pp. 1973-1983 ◽  
Author(s):  
Qianmin Ou ◽  
Yingling Miao ◽  
Fanqiao Yang ◽  
Xuefeng Lin ◽  
Li-Ming Zhang ◽  
...  

In bone tissue engineering, it is important for biomaterials to promote the osteogenic differentiation of stem cells to achieve tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document