scholarly journals Simulating Turbulent Air Flow Past a Hemispherical Body

R&D Journal ◽  
2021 ◽  
Author(s):  
M.R. Meas ◽  
J.F. Bruwer ◽  
M.L. Combrinck ◽  
T.M. Harms

ABSTRACT The flow of air past a smooth surface-mounted hemisphere is investigated numerically using six common RANS turbulence models and seeking steady flow solutions. Where possible, the turbulence models are applied using standard wall functions, resolving the viscous sublayer, and the enhanced wall treatment option in ANSYS Fluent. Results of the simulations are compared against measurements taken in a wind tunnel experiment. The comparison shows that enhanced wall treatment and resolving the boundary layer on a low Reynolds number mesh yields superior accuracy compared to standard wall functions or resolving the boundary layer on a high Reynolds number mesh, for all the turbulence models considered. The RNG k - ε model with enhanced wall treatment applied is found to yield the most accurate prediction of the static pressure distribution across the surface of the hemisphere model. Conversely, the Reynolds Stress model and the standard k - ω model are found to give the least accurate predictions, irrespective of the near-wall modelling approach applied. It is found that good agreement with the experimental data for this case offlows can be attained using each of the near-wall modelling techniques if a well-suited turbulence model is used. Keywords: hemisphere, wind tunnel, turbulence modelling, computational fluid dynamics, steady flow

Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


Author(s):  
A. K. Sleiti ◽  
J. S. Kapat

A 3-D analysis of two-equation eddy-viscosity (EVMs) and Reynolds stress (RSM) turbulence models and their application to solving flow and heat transfer in rotating rib-roughened internal cooling channels is the main focus of this study. The flow in theses channels is affected by ribs, rotation, buoyancy, bends and boundary conditions. The EVMs considered are: The standard k–ε Model: of Launder and Spalding Launder and Spalding [1], the Renormalization Group k-ε model: Yakhot and Orszag [2], the Realizable k-ε model Shur et al. [3], the standard k-ω Model, Wilcox Wilcox [4], and the Shear-Stress Transport (SST) k-ω Model, Menter [5]. The viscosity affected near wall region is resolved by enhanced near wall treatment using combined two-layer model with enhanced wall functions. The results for both stationary and rotating channels showed the advantages of Reynolds Stress Model (RSM), Gibson and Launder [6], Launder [7], Launder [8] in predicting the flow field and heat transfer compared to the isotropic EVMs that need corrections to account for streamline curvature, buoyancy and rotation.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


2000 ◽  
Vol 122 (3) ◽  
pp. 522-532 ◽  
Author(s):  
H. Lee ◽  
S.-H. Kang

Transition characteristics of a boundary layer on a NACA0012 airfoil are investigated by measuring unsteady velocity using hot wire anemometry. The airfoil is installed in the incoming wake generated by an airfoil aligned in tandem with zero angle of attack. Reynolds number based on the airfoil chord varies from 2.0×105 to 6.0×105; distance between two airfoils varies from 0.25 to 1.0 of the chord length. To measure skin friction coefficient identifying the transition onset and completion, an extended wall law is devised to accommodate transitional flows with pressure gradient and nonuniform inflows. Variations of the skin friction are quite similar to that of the flat plate boundary layer in the uniform turbulent inflow of high intensity. Measured velocity profiles are coincident with families generated by the modified wall law in the range up to y+=40. Turbulence intensity of the incoming wake shifts the onset location of transition upstream. The transitional region becomes longer as the airfoils approach one another and the Reynolds number increases. The mean velocity profile gradually varies from a laminar to logarithmic one during the transition. The maximum values of rms velocity fluctuations are located near y+=15-20. A strong positive skewness of velocity fluctuation is observed at the onset of transition and the overall rms level of velocity fluctuation reaches 3.0–3.5 in wall units. The database obtained will be useful in developing and evaluating turbulence models and computational schemes for transitional boundary layer. [S0098-2202(00)01603-5]


Author(s):  
Marco Colombo ◽  
Antonio Cammi ◽  
Marco E. Ricotti

This paper deals with a comprehensive study of fully developed single-phase turbulent flow and pressure drops in helically coiled channels. To the aim, experimental pressure drops were measured in an experimental campaign conducted at SIET labs, in Piacenza, Italy, in a test facility simulating the Steam Generator (SG) of a Generation III+ integral reactor. Very good agreement is found between data and some of the most common correlations available in literature. Also more data available in literature are considered for comparison. Experimental results are used to assess the results of Computational Fluid Dynamics (CFD) simulations. By means of the commercial CFD package FLUENT, different turbulence models are tested, in particular the Standard, RNG and realizable k-ε models, Shear Stress Transport (SST) k-ω model and second order Reynolds Stress Model (RSM). Moreover, particular attention is placed on the different types of wall functions utilized through the simulations, since they seem to have a great influence on the calculated results. The results aim to be a contribution to the assessment of the capability of turbulence models to simulate fully developed turbulent flow and pressure drops in helical geometry.


2017 ◽  
Vol 64 (3) ◽  
pp. 401-418 ◽  
Author(s):  
Mateusz Jędrzejewski ◽  
Marta Poćwierz ◽  
Katarzyna Zielonko-Jung

Abstract In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Author(s):  
Adam H. Richards ◽  
Robert E. Spall

A two-equation k-ω model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-ω model to improve heat transfer predictions.


Sign in / Sign up

Export Citation Format

Share Document