scholarly journals An effect of the power unit parameter deviation on excess fuel consumption components

Author(s):  
Ilya Tikhonov ◽  
◽  
Alexander Dvortsevoy ◽  
Pavel Shchinnikov ◽  
Urii Ovchinnikov ◽  
...  
Author(s):  
Wissam Bou Nader ◽  
Yuan Cheng ◽  
Emmanuel Nault ◽  
Alexandre Reine ◽  
Samer Wakim ◽  
...  

Gas turbine systems are among potential energy converters to substitute the internal combustion engine as auxiliary power unit in future series hybrid electric vehicle powertrains. Fuel consumption of these auxiliary power units in the series hybrid electric vehicle strongly relies on the energy converter efficiency and power-to-weight ratio as well as on the energy management strategy deployed on-board. This paper presents a technological analysis and investigates the potential of fuel consumption savings of a series hybrid electric vehicle using different gas turbine–system thermodynamic configurations. These include a simple gas turbine, a regenerative gas turbine, an intercooler regenerative gas turbine, and an intercooler regenerative reheat gas turbine. An energetic and technological analysis is conducted to identify the systems’ efficiency and power-to-weight ratio for different operating temperatures. A series hybrid electric vehicle model is developed and the different gas turbine–system configurations are integrated as auxiliary power units. A bi-level optimization method is proposed to optimize the powertrain. It consists of coupling the non-dominated sorting genetic algorithm to the dynamic programming to minimize the fuel consumption and the number of switching ON/OFF of the auxiliary power unit, which impacts its durability. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and thermal comfort vehicle energetic needs. Results show that the intercooler regenerative reheat gas turbine–auxiliary power unit presents an improved fuel consumption compared with the other investigated gas turbine systems and a good potential for implementation in series hybrid electric vehicles.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2995 ◽  
Author(s):  
Łukasz Warguła ◽  
Mateusz Kukla ◽  
Piotr Krawiec ◽  
Bartosz Wieczorek

Alternative fuel within the meaning of Directive 2014/94/EU is, among others, LPG (liquefied petroleum gas), characterized by a lower purchase cost and lower emissions of toxic exhaust compounds in comparison to the combustion of classic gasoline. In wood chippers, intended for chopping branches, with low-power internal combustion engines that meet the emission standards in force in 2019 in the European Union, in accordance with Regulation 2016/1628/EU, carburetor fuel supply systems are commonly used. Innovative trends in the development of these drives are: electronic fuel injection, systems supporting the adaptation of the working elements to the conditions of use and the use of alternative fuels. The first two solutions significantly affect the cost of purchasing a power unit or modernizing it. The authors of this article indicate, as a beneficial alternative, a cheap (EUR 105) possibility of modernizing the carburetor fuel supply system. It is based on a modification that will allow for the use of LPG instead of gasoline to drive the working system of the wood chipper. This article presents the results of tests on the fuel consumption of a wood chipper powered with gasoline (3.04 L h−1) and LPG (3.65 L h−1) during continuous chipping. The cost of an hour of chipping related to fuel consumption was determined, which was equal to 3.89 € h−1 while using gasoline, and 2.19 € h−1 when using LPG. The mass flow rate (0.66 t h−1) and volumetric flow rate (3.5 m3 h−1) of a wood chipper powered by a low-power (9.5 kW) internal combustion engine with spark ignition were determined. In addition, we determined the cost of producing 1 m3 of biomass from chipping freshly cut oak branches (Quercus robur L. Sp. Pl. 996 1753) with a maximum diameter of 80 mm and a humidity of 25%. The branches were selected earlier in such a way that their dimensions as as similar as possible. This amounted to EUR 1.11 for a gasoline-powered drive and EUR 0.63 for a LPG powered one. The benefits of using an alternative fuel supply system, the installation of which increases the cost of the machine by 8.4%, have been confirmed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Murat Kapsiz ◽  

Hydraulic systems are used in a wide variety of applications, stationary as well as mobile. Hydraulic pumps und motors are in many cases used for both propulsion and various work functions and is thus often a significant user of energy. Efficiency performance of a mobile hydraulic systems over a wide range of pressure and speed conditions is crucially important for power unit to save energy. In this study, efficiency of a mobile hydraulic system are studied. Mobile hydraulic system is equipped with diesel engine as power unit and axial piston pumps used for hydraulic power. The relationships between the efficiency of the axial piston pump and the power loss, the efficiency of diesel engine and the output power were explained by graphics. The average power loss of axial piston pump have changed from 0.1 kW to 2.5 kW. Losses of an axial piston pump have been determined thus fuel consumption and CO2 emission caused by these losses were shown by graph. The CO2 emission affected by the increase in pressure and speed, it reached from 5.231 kg/h to 5.61 kg/h. The research focused on analysis for axial piston pump in mobile applications, with emphasis on pump losses, fuel consumption and CO2 emission.


Author(s):  
G. T. Kulakov ◽  
K. I. Artsiomenka

The article concerns the problem of structure-and-parametric optimization of a cascade automatic control system (CACS) by an example of a boiler power controller and a fuel controller. This CACS, which is a part of automatic control systems for power units, consists of two loops, viz. of an inner loop (which purpose is stabilization of the system) and an outer loop (designed for the adjustment) and, also, of two controller, viz. an outer controller (which is a basic one) provided for stabilization of the output value of the object (in our case, of the actual power unit capacity) and of an inner controller (which is an auxiliary one) provided to regulate fuel consumption. The internal controller builds up the control action with the aid of the boiler load controller of the power unit. As compared to single-loop automatic control systems, the cascade  system provides better quality of transient control due to the higher performance of the internal loop of the system. This advantage is especially noticeable when compensating for disturbances that come through the channel of regulating impact. The article presents two methods of setting, viz. the fuel controller and the boiler power controller. The application of these methods can improve the quality of power control and reduce fuel consumption in transient modes in comparison with the setting of these controllers of a typical power unit automatic power control system. The results of computer simulation of transient processes in CACS for input step surge and internal perturbation confirm the advantages of the methods are presented in this article.


2014 ◽  
Vol 654 ◽  
pp. 113-116
Author(s):  
Ning Ling Wang ◽  
Han Xu ◽  
Peng Fu ◽  
Dian Fa Wu ◽  
Zhi Ping Yang ◽  
...  

The exhaust pressure affects the economic performance of the whole power unit greatly. Based on the theory of energy specific fuel consumption (ESFC), the changing principle of energy consumption in a power unit was studied. In the turbine unit, the energy-consumption caused by topological factors was also discussed with different exhaust pressure. The results showed that the changing of exhaust pressure makes great effects on topological energy consumption of steam turbine. It makes great reference for the energy-saving diagnosis of the energy consumption for the overall power units.


Author(s):  
Larry Biess ◽  
Ted Stewart ◽  
David Miller ◽  
Steven Fritz

This paper documents results of fuel consumption and exhaust emission tests performed on a 1,500 kW EMD GP38-2 locomotive equipped with an auxiliary power unit (APU) designed to minimize main engine idling time by providing stand-by services normally provided by the main EMD 16-645-E engine at idle. The purpose of these tests was to perform an evaluation of the exhaust emissions and fuel consumption of both the EMD 16-645-E engine and the APU. The APU diesel engine was a 2.0L, 4-cylinder, turbocharged, Kubota model V2003-TEBG rated at 30.6 kW. The APU was tested using an external load box over a range of load conditions, ranging from unloaded (0 kW) through 16 kW, which was the maximum APU load expected as installed in the locomotive. Fuel consumption and exhaust emissions are compared between an idling EMD 16-645-E engine and the APU engine at a “typical” stand-by condition with the coolant and lubricating oil heaters operating and the locomotive control cab air conditioner turned off. Test results showed that the APU fuel consumption and exhaust emissions are dramatically lower than the idling EMD locomotive engine. Because the APU is designed to automatically start and stop as a function of the locomotive water temperature, and therefore operates only a portion of the time that the EMD engine would otherwise be idling. Reductions in fuel consumption and exhaust emissions over an extended period of time would be even more dramatic.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Wissam Bou Nader ◽  
Florent Breque ◽  
Youssef Mazloum ◽  
Clément Dumand ◽  
Maroun Nemer

Abstract Gas turbine systems are among potential energy converters to substitute the internal combustion engine in future series hybrid electric vehicle. Fuel consumption of these powertrains strongly relies on the energy converter efficiency, the energy management strategy deployed on-board as well as on the transient operation during start-up phase. This paper presents a dynamic modeling and the fuel consumption calculation of an intercooled regenerative reheat gas turbine system used as an auxiliary power unit on a series hybrid electric vehicle. A vehicle model is developed and an optimization method is proposed to optimize the powertrain operation. It consists of using the dynamic programing as an energy management strategy in order to minimize the fuel consumption and the number of switching On/Off of the power unit. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and the thermal comfort vehicle energetic needs. Then, a gas turbine dynamic model is developed, where turbomachinery and heat exchanger components are modeled by taking into account their dynamic inertias. The efficiency, the power, and the fuel consumption are calculated during transient operations. Based on the optimization results of switching ON and OFF the system, the fuel consumption dynamic simulation results are considered instead of the dynamic programming results. A constant power start-up strategy and a constant fuel strategy were investigated. Results show an increase in fuel consumption between 2.4% and 3.8% with the first start-up scenario and between 5.7% and 6.4% with the second scenario, compared with static model.


Energy ◽  
2021 ◽  
pp. 120887
Author(s):  
Jimin Zeng ◽  
Lidong Liu ◽  
Xiao Liang ◽  
Shihe Chen ◽  
Jun Yuan

Author(s):  
Marco Sorrentino ◽  
Cesare Pianese

This paper reports on the development of a control-oriented model for simulating a hybrid auxiliary power unit (APU) equipped with a solid oxide fuel cell (SOFC) stack. Such a work is motivated by the strong interest devoted to SOFC technology due to its highly appealing potentialities in terms of fuel savings, fuel flexibility, cogeneration, low-pollution and low-noise operation. In this context, the availability of a model with acceptable computational burden and satisfactory accuracy can significantly enhance both system and control strategy design phases for APUs destined to a wide application area (e.g., mild-hybrid cars, trains, ships, and airplanes). The core part of the model is the SOFC stack, surrounded by a number of ancillary devices: air compressor/blower, regulating pressure valves, heat exchangers, prereformer, and postburner. Since the thermal dynamics is clearly the slowest one, a lumped-capacity model is proposed to describe the response of SOFC and heat exchangers to load (i.e., operating current) variation. The stack model takes into account the dependence of stack voltage on operating temperature, thus adequately describing the typical voltage undershoot following a decrease in load demand. On the other hand, due to their faster dynamics the mass transfer and electrochemistry processes are assumed instantaneous. The hybridizing device, whose main purpose is to assist the SOFC system (i.e., stack and ancillaries) during transient conditions, consists of a lead-acid battery pack. Battery power dependence on current is modeled, taking into account the influence of actual state of charge on open circuit voltage and internal resistance. The developed APU model was tested by simulating typical auxiliary power demand profiles for a heavy-duty truck in parked-idling phases. Suited control strategies also were developed to avoid operating the SOFC stack under severe thermal transients and, at the same time, to guarantee a charge sustaining operation of the battery pack. In order to assess the benefits achievable by introducing the SOFC-APU on board of a commercial truck, the simulated fuel consumption was compared with the fuel consumed by idling the thermal engine. From the simulation carried out, it emerges how the SOFC-APU allows achieving a potential reduction in fuel consumption of up to 70%.


Sign in / Sign up

Export Citation Format

Share Document