scholarly journals Assessment of Selected ROTEM Parameters, Kinetics of Fibrinogen Polymerization and Plasmin Amidolytic Activity in Patients with Congenital Fibrinogen Defects

2016 ◽  
Vol 25 (6) ◽  
pp. 1255-1263 ◽  
Author(s):  
Jacek Treliński ◽  
Katarzyna Pachniewska ◽  
Justyna Matczak ◽  
Paweł Nowak ◽  
Marta Robak ◽  
...  
Blood ◽  
1982 ◽  
Vol 60 (1) ◽  
pp. 64-70 ◽  
Author(s):  
M Silverberg ◽  
AP Kaplan

Abstract Pro-Phe-Arg chloromethylketone (PPACMK) at 5.26 microM inactivated the amidolytic activity of native human Hageman factor with an apparent first-order rate constant of 0.75 min-1. The activated forms of Hageman factor, Hfa and HFf, were also inactivated by PPACMK with rate constants 0.82 and 0.72 min-1. These numbers indicate that the activity detectable in native Hageman factor is due to contamination with activated species. Uncleaved Hageman factor reacts slowly with 40 mM diisopropyl fluorophosphate with concomitant loss of its procoagulant activity. Incubation of native Hageman factor with PPACMK does not destroy its procoagulant activity, even in the presence of the activator dextran sulphate, but PPACMK inhibits autoactivation of Hageman factor, suggesting that no active site is formed in uncleaved, surface-bound Hageman factor. The activation of prekallikrein by Hageman factor under initial-rate conditions occurs after a lag and is prevented by an inhibitor of Hageman factor from corn. The kinetics of prekallikrein activation and the effects of inhibitors provide evidence that the amidolytic and proteolytic activities of human Hageman factor reside in the activated forms derived by limited proteolysis of the native molecule.


1990 ◽  
Vol 269 (2) ◽  
pp. 299-302 ◽  
Author(s):  
A A R Higazi ◽  
M Mayer

The kinetics of inhibition of the amidolytic activity of plasmin on D-Val-L-Leu-L-Lys p-nitroanilide hydrochloride (S-2251) by fibrinogen and fibrin were determined. Reciprocal (1/v versus 1/[S]) plots of plasmin inhibition by 0.50 microM-fibrinogen showed a non-linear downward curve. The Hill coefficient (h) was 0.68, suggesting negative co-operativity. By contrast, fibrin produced a simple competitive inhibition of plasmin (Ki = 12 micrograms/ml). Addition of 0.1 mM-6-aminohexanoic acid shifted the non-linear curve obtained in the presence of fibrinogen to a straight line as for controls, indicating that 6-aminohexanoic acid abolishes the fibrinogen-induced inhibition. Transient exposure of the enzyme to pH 1.0 abrogates the ability of fibrinogen to inhibit plasmin activity. Acidification had no effect on the Vmax but increased the Km of plasmin. The present evidence for modulation of plasmin reveals a novel mechanism for control of fibrinolysis by fibrinogen, a component of the coagulation system and the precursor of the physiological substrate of plasmin.


1989 ◽  
Vol 260 (2) ◽  
pp. 609-612 ◽  
Author(s):  
A A A Higazi ◽  
M Mayer

Human plasmin activity is inhibited by various penicillins in a dose-dependent manner. Ampicillin and cloxacillin produce a 50% inhibition of the globinolytic activity of plasmin at 4.5 and 5.3 mM respectively. A lower inhibitory capacity is displayed by carbenicillin. Assay of plasmin by its amidolytic activity on D-valyl-L-leucyl-L-lysine p-nitroanilide dihydrochloride showed that ampicillin at a concentration producing half-maximal inhibition converted the hyperbolic activity-substrate concentration curve into a sigmoidal curve. A similar conversion occurred in the presence of ampicillin when plasmin was assayed with an alternative chromogenic substrate, L-pyroglutamyl-glycyl-L-arginine p-nitroanilide hydrochloride 6-Aminohexanoic acid at 7.5 microM abolished the inhibition of plasmin induced by ampicillin. The present observations suggest that ampicillin interacts with plasmin at a regulatory site different from the active site of the enzyme. The effect of 6-aminohexanoic acid indicates that the lysine-binding site may be part of a regulatory site. It is possible that modulation of plasmin activity by ligands plays a role in the control of fibrinolysis.


1997 ◽  
Vol 321 (2) ◽  
pp. 361-365 ◽  
Author(s):  
Edward J. DUFFY ◽  
Herbert ANGLIKER ◽  
Bernard F. Le BONNIEC ◽  
Stuart R. STONE

Substrates containing a P3 aspartic residue are in general cleaved poorly by thrombin. This may be partly due to an unfavourable interaction between the P3 aspartate and Glu192 in the active site of thrombin. In Protein C activation and perhaps also thrombin receptor cleavage, binding of ligands at the anion-binding exosite of thrombin seems to improve the activity of thrombin with substrates containing a P3 aspartate. To investigate the importance of Glu192 and exosite-binding in modulating thrombin's interactions with a P3 aspartate, peptidyl chloromethanes based on the sequence of the thrombin receptor (containing a P3 aspartate) have been synthesized and the kinetics of their inactivation of α-thrombin and the mutant Glu192 → Gln determined. The values of the inactivation rate constant (ki) for the chloromethanes containing a P3 aspartate were about two-fold higher with the Glu192 → Gln mutant. A peptide based on the sequence of hirudin (rhir52Ő65), which binds to the anion-binding exosite of thrombin, was an allosteric modulator of the amidolytic activity of the Glu192 → Gln mutant; a 5-fold decrease in the Km value for the substrate d-Phe-pipecolyl-Arg-p-nitroanilide was observed in the presence of saturating concentrations of rhir52Ő65. This exosite-binding peptide also increased the ki values of chloromethanes containing a P3 aspartate with both α-thrombin and the Glu192 → Gln mutant. However, the increases in the ki values were greater with the Glu192 → Gln mutant (5-fold compared with 2-fold for α-thrombin). Thus exosite binding does not seem to mitigate putative unfavourable interactions between Glu192 and the P3 aspartate. Moreover, increases in the ki caused by exosite binding were not unique to chloromethanes containing a P3 aspartate; increases of the same magnitude were also observed when the P3 position was occupied by the favourable d-phenylalanine in place of the unfavourable aspartate. The results obtained were consistent with exosite binding's causing changes in the conformation of the S2 and/or S1 sites of thrombin.


Blood ◽  
1982 ◽  
Vol 60 (1) ◽  
pp. 64-70 ◽  
Author(s):  
M Silverberg ◽  
AP Kaplan

Pro-Phe-Arg chloromethylketone (PPACMK) at 5.26 microM inactivated the amidolytic activity of native human Hageman factor with an apparent first-order rate constant of 0.75 min-1. The activated forms of Hageman factor, Hfa and HFf, were also inactivated by PPACMK with rate constants 0.82 and 0.72 min-1. These numbers indicate that the activity detectable in native Hageman factor is due to contamination with activated species. Uncleaved Hageman factor reacts slowly with 40 mM diisopropyl fluorophosphate with concomitant loss of its procoagulant activity. Incubation of native Hageman factor with PPACMK does not destroy its procoagulant activity, even in the presence of the activator dextran sulphate, but PPACMK inhibits autoactivation of Hageman factor, suggesting that no active site is formed in uncleaved, surface-bound Hageman factor. The activation of prekallikrein by Hageman factor under initial-rate conditions occurs after a lag and is prevented by an inhibitor of Hageman factor from corn. The kinetics of prekallikrein activation and the effects of inhibitors provide evidence that the amidolytic and proteolytic activities of human Hageman factor reside in the activated forms derived by limited proteolysis of the native molecule.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Sign in / Sign up

Export Citation Format

Share Document