scholarly journals The multifaceted plant-beneficial rhizobacteria toward agricultural sustainability

2021 ◽  
Vol 57 (No. 2) ◽  
pp. 95-111
Author(s):  
Olubukola Babalola ◽  
Oluwaseun Adeyinka Fasusi

Agricultural practices depend mainly on the use of chemical fertilisers, pesticides, and herbicides which have caused serious health hazards and have also contributed to the pollution of the environment at large. The application of plant-beneficial rhizobacteria in agrarian practices has become paramount in increasing soil fertility, promoting plant growth, ensuring food safety, and increasing crop production to ensure sustainable agriculture. Beneficial rhizobacteria are soil microorganisms that are eco-friendly and serve as a modern method of improving the plant yield, protecting the plant and soil fertility that pose no harm to humans and the environment. This eco-friendly approach requires the application of beneficial rhizobacteria with plant growth-promoting traits that can improve the nutrient uptake, enhance the resistance of plants to abiotic and biotic stress, protect plants against pathogenic microorganisms and promote plant growth and yield. This review article has highlighted the multitasking roles that beneficial rhizobacteria employ in promoting plant growth, food production, bioremediation, providing defence to plants, and maintaining soil fertility. The knowledge acquired from this review will help in understanding the bases and importance of plant-beneficial rhizobacteria in ensuring agricultural sustainability and as an alternative to the use of agrochemicals.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


2021 ◽  
Author(s):  
Rafia Younas ◽  
Shiza Gul ◽  
Rehan Ahmad ◽  
Ali Raza Khan ◽  
Mumtaz Khan ◽  
...  

Global climate change is leading to a series of frequent onset of environmental stresses such as prolonged drought periods, dynamic precipitation patterns, heat stress, and cold stress on plants and commercial crops. The increasing severity of such stresses is not only making agriculture and related economic sector vulnerable but also negatively influences plant diversity patterns. The global temperature of planet Earth has risen to 1.1°C since the last 19th century. An increase in surface temperature leads to an increase in soil temperature which ultimately reduces water content in the soil, thereby, reducing crop growth and yield. Moreover, this situation is becoming more intense for agricultural practices in arid and semi-arid regions. To overcome climatically induced stresses, acclimatization of plant species via bioinoculation with Plant Growth Promoting Rhizobacteria (PGPR) is becoming an effective approach. The PGPR are capable of colonizing rhizosphere (exophytes) as well as plant organs (endophytes), where they trigger an accumulation of osmolytes for osmoregulation or improving gene expression of heat or cold stress proteins, or by signaling the synthesis of phytohormones, metabolites, proteins, and antioxidants to scavenge reactive oxygen species. Thus, PGPR exhibiting multiple plant growth-promoting traits can be employed via bioinoculants to improve the plant’s tolerance against unfavorable stress conditions.


Author(s):  
Becky N. Aloo ◽  
Billy A. Makumba ◽  
Ernest R. Mbega

The world’s population is increasing and so are agricultural activities to match the growing demand for food. Conventional agricultural practices generally employ artificial fertilizers to increase crop yields, but these have multiple environmental and human health effects. For decades, environmentalists and sustainability researchers have focused on alternative crop fertilization mechanisms to address these challenges, and biofertilizers have constantly been researched, recommended, and even successfully-adopted for several crops. Biofertilizers are microbial formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which can naturally improve plant growth either directly or indirectly, through the production of phytohormones, solubilization of soil nutrients, and production of iron-binding metabolites; siderophores. Biofertilizers, therefore, hold immense potential as tools for sustainable crop production especially in the wake of climate change and global warming. Despite the mounting interest in this technology, their full potential has not yet been realized. This review updates our understanding of the PGPR biofertilizers and sustainable crop production. It evaluates the history of these microbial products, assesses their present state of utilization, and also critically propounds on their future prospects for sustainable crop production. Such information is desirable to fully evaluate their potential and can ultimately pave the way for their increased adoption for crop production.


2021 ◽  
Vol 9 (12) ◽  
pp. 2453
Author(s):  
Sook-Kuan Lee ◽  
Huu-Sheng Lur ◽  
Chi-Te Liu

Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document