scholarly journals Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags

2019 ◽  
Vol 65 (No. 6) ◽  
pp. 328-335 ◽  
Author(s):  
Xiaohui Hu ◽  
Feng Qu ◽  
Jingjing Jiang ◽  
Jiwen Xu ◽  
Tao Liu

This study was conducted to identify ideal irrigation and fertigation levels for maximum yields and profitability of cucumber grown in a substrate-bag cultivation system. The experiment was laid out in randomized complete-block design, with combinations of four drip irrigation rates (75, 100, 125, or 150% of crop evapotranspiration (ETc)) and three fertilization (F) levels (60, 100, or 125% of one dose of Yamazaki nutrient solution formula). The ‘irrigation level × fertilization level’ interaction significantly affected cucumber yield and nitrogen accumulation. The treatment combination of 125% ETc and 100% F promoted yield relatively best. Plants were grown in the 125% ETc and 125% F treatment combination accumulated the most nitrogen. The greatest nitrogen use efficiency (NUE) was observed in the 100% ETc plus 60% F treatment combination. Water use efficiency (WUE) decreased with increasing irrigation rate, and considering just one fertilization level. Through the multivariate regression analysis and the spatial analysis methods to evaluate yield, WUE, and NUE, we conclude that the combination of 13.54–23.78 g/plantand 37.71–52.59 L/plant were the best strategy of fertigation and irrigation for the production of drip-irrigated cultivated cucumber grown in substrate bags in spring.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhigang Wang ◽  
Bao-Luo Ma ◽  
Xiaofang Yu ◽  
Julin Gao ◽  
Jiying Sun ◽  
...  

AbstractEfficient use of nitrogen inputs for concurrent improvements in grain yield and nitrogen use efficiency (NUE) has been recognized as a viable strategy for sustainable agriculture development. Yet, there is little research on the possible physiological basis of maize hybrid heterosis for NUE and measurable traits that are corresponding to the NUE heterosis. A field study was conducted for two years to evaluate the heterosis for NUE and determine the relationship between NUE and its physiological components. Two commercial hybrids, ‘Xianyu335’ and ‘Zhengdan958’, and their parental inbred lines, were grown at 0 (0 N) and 150 kg N ha−1 (150 N), in a randomized complete block design with four replications each year. Compared to their parental lines, both hybrids displayed a significant heterosis, up to 466%, for NUE. N internal efficiency (NIE) accounted for 52% of the variation in heterosis for NUE, while there was generally negligible heterosis for nitrogen recovery efficiency (NRE). Heterosis for NIE and thereby for NUE in maize was ascribed to (i) an earlier establishment of pre-anthesis source for N accumulation, which phenotypically exhibited as a faster leaf appearance rate with higher maximum LAI and photosynthetic nitrogen use efficiency; (ii) a larger amount of N being remobilized from the vegetative tissues, especially from leaves, during the grain filling. Phenotypically, there was notably a rapid reduction in post-anthesis specific weights of leaf and stalk, but with maintained functionally stay-green ear leaves; and (iii) a higher productive efficiency per unit grain N, which was characterized by a reduced grain N concentration and enhanced sink strength.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1081 ◽  
Author(s):  
Oladapo Adeyemi ◽  
Reza Keshavarz-Afshar ◽  
Emad Jahanzad ◽  
Martin Leonardo Battaglia ◽  
Yuan Luo ◽  
...  

Corn (Zea mays L.) grain is a major commodity crop in Illinois and its production largely relies on timely application of nitrogen (N) fertilizers. Currently, growers in Illinois and other neighboring states in the U.S. Midwest use the maximum return to N (MRTN) decision support system to predict corn N requirements. However, the current tool does not factor in implications of integrating cover crops into the rotation, which has recently gained attention among growers due to several ecosystem services associated with cover cropping. A two-year field trail was conducted at the Agronomy Research Center in Carbondale, IL in 2018 and 2019 to evaluate whether split N application affects nitrogen use efficiency (NUE) of corn with and without a wheat (Triticum aestivum L.) cover crop. A randomized complete block design with split plot arrangements and four replicates was used. Main plots were cover crop treatments (no cover crop (control) compared to a wheat cover crop) and subplots were N timing applications to the corn: (1) 168 kg N ha−1 at planting; (2) 56 kg N ha−1 at planting + 112 kg N ha−1 at sidedress; (3) 112 kg N ha−1 at planting + 56 kg N ha−1 at sidedress; and (4) 168 kg N ha−1 at sidedress along with a zero-N control as check plot. Corn yield was higher in 2018 than 2019 reflecting more timely precipitation in that year. In 2018, grain yield declined by 12.6% following the wheat cover crop compared to no cover crop control, indicating a yield penalty when corn was preceded with a wheat cover crop. In 2018, a year with timely and sufficient rainfall, there were no yield differences among N treatments and N balances were near zero. In 2019, delaying the N application improved NUE and corn grain yield due to excessive rainfall early in the season reflecting on N losses which was confirmed by lower N balances in sidedressed treatments. Overall, our findings suggest including N credit for cereals in MRTN prediction model could help with improved N management in the Midwestern United States.


2014 ◽  
Vol 89 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Weidong Yang ◽  
Zhiqiang Zhu ◽  
Fengliang Zhao ◽  
Zheli Ding ◽  
Muhammad Tariq Rafiq ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1252
Author(s):  
Lin Li ◽  
Zheng Zhang ◽  
Hua Tian ◽  
Zhaowen Mo ◽  
Umair Ashraf ◽  
...  

Mechanical pot-seedling transplanting (PST) is an efficient transplanting method and deep nitrogen fertilization has the advantage of increasing nitrogen use efficiency. However, little information is available about the effect of PST when coupled with mechanized deep nitrogen (N) fertilization on grain yield, nitrogen use efficiency, and antioxidant enzyme activities in rice. A two-year field experiment was performed to evaluate the effect of PST coupled with deep N fertilization in both early seasons (March–July) of 2018 and 2019. All seedlings were transplanted by PST and three treatments were designed as follows. There was a mechanized deep placement of all fertilizer (MAF), broadcasting fertilizer (BF), no fertilizer (N0). MAF significantly increased grain yield by 52.7%. Total nitrogen accumulation (TNA) was enhanced by 27.7%, nitrogen partial factor productivity (NPFP) was enhanced by 51.4%. nitrogen recovery efficiency (NRE) by 123.7%, and nitrogen agronomic efficiency (NAE) was enhanced by 104.3%, compared with BF treatment. Moreover, MAF significantly improved peroxidase (POD), catalase (CAT), and notably reduced the malonic dialdehyde (MDA) content for both rice cultivars, compared to BF. Hence, the result shows that mechanical pot-seedling transplanting coupled with nitrogen deep placement is an efficient method with the increase of grain yield and nitrogen use efficiency in rice cultivation in South China.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 158-158
Author(s):  
Diogo Fleury Azevedo Costa ◽  
Peter Carmona ◽  
Lais Lima ◽  
Brandon Fraser ◽  
Luis Silva

Abstract Performance of cattle in rangeland systems is driven by the ability to efficiently use nutrients during periods of restricted availability. Thirty Bos indicus steers (398 ± 24 kg BW) were used to evaluate the relationship between feed efficiency (FE) and nitrogen use efficiency (NUE). The hypothesis was that FE would be related to NUE in protein restricted diets, but not in high-protein diets. Steers used in a completely randomized block design were classified by residual gain in low (LFE), medium (MFE) and highly feed efficient (HFE), after being fed for periods of 70 days with diets supplying either 70% (LP) or 100% (HP) of their rumen degradable protein requirements. After each 70-day period, animals were adapted to metabolism crates for two days, and NUE was measured for five days. About 10% of daily faecal and urine output of each animal was collected for N analysis. Results of N intake from LFE, MFE and HFE in the LP diet were 21.6, 21.2 and 22.2 g N/100 kg BW (P = 0.63), while the total N excretion was 20.3, 18.0 and 19.0 g N/100 kg BW (P = 0.45) for LFE, MFE and HFE, respectively. NUE values were 11.1, 26.9 and 28.0 g retained N/100 g of digested N (P = 0.04). In the HP diet, N intake was 31.6, 30.8 and 26.8 g/100 kg BW (P = 0.12) for LFE, MFE, and HFE, respectively. Total N excretion was 26.9, 28.8 and 27.5 g N/100 kg BW (P = 0.83), respectively. NUE in the HP diet was 21.0, 5.2 and -6.3 g retained N/100 g of digested N (P = 0.04). These results support the hypothesis that FE is dependent on NUE in protein restricted diets; whereas when evaluated in protein abundant diets, FE is not related to NUE.


2018 ◽  
Vol 39 (3) ◽  
pp. 1225
Author(s):  
Aline Barros da Silva ◽  
Carlos Augusto Brandão de Carvalho ◽  
Danilo Antonio Morenz ◽  
Pedro Henrique Ferreira da Silva ◽  
Alex Junio dos Santos ◽  
...  

Under the hypothesis that modifying nitrogen sources and doses could increase nitrogen fertilization efficiency and productivity and improve forage quality, this study aimed to evaluate the morphological composition, structural characteristics and chemical composition of Panicum maximum cv. Massai forage cultivated under different urea sources (common and coated with Policote®) and nitrogen doses (200, 400 and 600 kg ha-1 year-1) during the autumn, winter and spring of 2014 and the summer and autumn of 2015. The experiment was carried out in Seropédica, RJ, under a randomized complete block design in a factorial arrangement (3x2) + 1 with four replications. High nitrogen rates promoted higher percentages of leaf blade dry mass and lower percentages of dead material dry mass in the forage mass and provided higher tiller population density and forage accumulation rate of Massai grass during the studied seasons. The use of coated urea promoted higher levels of crude protein in the forage than did the use of common urea in all seasons. The intensification of nitrogen fertilization reduced the nitrogen use efficiency but benefitted the structural characteristics, forage accumulation and chemical composition of Massai grass forage. The use of coated urea promoted greater of nitrogen use efficiency during all seasons of the year.


2021 ◽  
Vol 13 (7) ◽  
pp. 699-716
Author(s):  
En Lin ◽  
Hongguang Liu ◽  
Xinxin Li ◽  
Ling Li ◽  
Sumera Anwar

2020 ◽  
Author(s):  
Prabin Ghimire

Abstract Unsuitable nitrogen management and low soil fertility are major constraints of wheat production in Nepal. Limited information is available on optimum nitrogen rates and use efficiencies. So a field experiment was conducted on the inner terai to determine the effect nitrogen on yield and improving the nitrogen use efficiency of wheat. Level of five doses of nitrogen, 0kg ha-1 (Control), 60kg ha-1,80kg ha-1,100kg ha-1 and 120kg ha-1 were laid out in Randomized Completely Block Design (RCBD) with four replication. Observation on the various parameters of yield attributing characters like plant height(cm), tiller m-2 thousand grain weight(Kg), spike length(cm), grain spike-1was found highest on Nitrogen dose 120 kg ha-1. Similarly, nitrogen at 120kg ha-1 increases the grain yield by increasing the biological yield and harvest index. Grain nitrogen concentration at 120 kg ha-1 is statistically similar with 100 kg ha-1 and 80 kg ha-1 while nitrogen uptake is highest (114.833kg ha-1) in 120kg ha-1 and lowest in control. Agronomic use efficiency is highest observed in 100kg ha-1 and lowest on 60 kg ha-1. Apparent fertilizer N recovery ratio obtained high (49.62%) in 120 kg ha-1 which is statistically similar to 100kg ha-1 (46.97%) and lowest (31.76%) in 60 kg ha-1. While observing agro physiological efficiency and Nitrogen harvest index did not show any significant difference among any treatments. The application of nitrogen at 120kg ha-1 was required to produce the optimum yield and increasing the nitrogen use efficiency traits.


Sign in / Sign up

Export Citation Format

Share Document