scholarly journals Effects of earthworms and mycorrhizal fungi on the growth of the medicinal herb Calendula officinalis (Asteraceae)

2011 ◽  
Vol 57 (No. 11) ◽  
pp. 499-504 ◽  
Author(s):  
J.G. Zaller ◽  
F. Saccani ◽  
T. Frank

  Both earthworms and symbiotic arbuscular mycorrhizal fungi (AMF) often co-occurr in ecosystems, however very little is known on their interrelationships. Here we tested to what extent earthworms (Annelida) or AMF (Glomales) separately or in combination affect the growth of the pharmaceutical plant species, pot marigold (Calendula officinalis, Asteraceae). We conducted a greenhouse experiment using non-sterilized field soil where we manipulated the factors earthworms (addition/no addition of the vertical burrowing species Lumbricus terrestris) and AMF (addition/no addition of a mix of the four Glomus taxa G. geosporum, G. mosseae, G. intraradices, G. claroideum). Leaf length and flower stem length was significantly increased by earthworms but remained unaffected by additional AMF. The longest leaves and flower stems were observed in pots containing earthworms but no additional AMF. The number of flower buds was unaffected by earthworms but marginally significantly increased by AMF. Plant shoot biomass production was significantly higher when earthworms were present; AMF inoculation had no effect on biomass production. Root biomass production and total plant biomass production remained unaffected by earthworms or AMF. These results indicate that in soil already containing AMF earthworm addition primarily affects vegetative growth while additional AMF inoculation tended to affect reproductive plant parts.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
S. J. Watts-Williams ◽  
N. Jewell ◽  
C. Brien ◽  
B. Berger ◽  
T. Garnett ◽  
...  

There are many reported benefits to plants of arbuscular mycorrhizal fungi (AMF), including positive plant biomass responses; however, AMF can also induce biomass depressions in plants, and this response receives little attention in the literature. High-throughput phenotyping (HTP) technology permits repeated measures of an individual plant’s aboveground biomass. We examined the effect on AMF inoculation on the shoot biomass of three contrasting plant species: a vegetable crop (tomato), a cereal crop (barley), and a pasture legume (Medicago). We also considered the interaction of mycorrhizal growth responses with plant-available soil zinc (Zn) and phosphorus (P) concentrations. The appearance of a depression in shoot biomass due to inoculation with AMF occurred at different times for each plant species; depressions appeared earliest in tomato, then Medicago, and then barley. The usually positive-responding Medicago plants were not responsive at the high level of soil available P used. Mycorrhizal growth responsiveness in all three species was also highly interactive with soil Zn supply; tomato growth responded negatively to AMF inoculation in all soil Zn treatments except the toxic soil Zn treatment, where it responded positively. Our results illustrate how context-dependent mycorrhizal growth responses are and the value of HTP approaches to exploring the complexity of mycorrhizal responses.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
S. J. Watts-Williams ◽  
N. Jewell ◽  
C. Brien ◽  
B. Berger ◽  
T. Garnett ◽  
...  

There are many reported benefits to plants of arbuscular mycorrhizal fungi (AMF), including positive plant biomass responses; however, AMF can also induce biomass depressions in plants, and this response receives little attention in the literature. High-throughput phenotyping (HTP) technology permits repeated measures of an individual plant’s aboveground biomass. We examined the effect on AMF inoculation on the shoot biomass of three contrasting plant species: a vegetable crop (tomato), a cereal crop (barley), and a pasture legume (Medicago). We also considered the interaction of mycorrhizal growth responses with plant-available soil zinc (Zn) and phosphorus (P) concentrations. The appearance of a depression in shoot biomass due to inoculation with AMF occurred at different times for each plant species; depressions appeared earliest in tomato, then Medicago, and then barley. The usually positive-responding Medicago plants were not responsive at the high level of soil available P used. Mycorrhizal growth responsiveness in all three species was also highly interactive with soil Zn supply; tomato growth responded negatively to AMF inoculation in all soil Zn treatments except the toxic soil Zn treatment, where it responded positively. Our results illustrate how context-dependent mycorrhizal growth responses are and the value of HTP approaches to exploring the complexity of mycorrhizal responses.


2020 ◽  
Vol 6 (2) ◽  
pp. 44 ◽  
Author(s):  
Zhaoyong Shi ◽  
Jiacheng Zhang ◽  
Shichuan Lu ◽  
Yang Li ◽  
Fayuan Wang

Arbuscular mycorrhizal fungi are among the most ubiquitous soil plant-symbiotic fungi in terrestrial environments and can alleviate the toxic effects of various contaminants on plants. As an essential micronutrient for higher plants, molybdenum (Mo) can cause toxic effects at excess levels. However, arbuscular mycorrhizal fungal impacts on plant performance and Mo accumulation under Mo-contamination still require to be explored. We first studied the effects of Claroideoglomus etunicatum BEG168 on plant biomass production and Mo accumulation in a biofuel crop, sweet sorghum, grown in an agricultural soil spiked with different concentrations of MoS2. The results showed that the addition of Mo produced no adverse effects on plant biomass, N and P uptake, and root colonization rate, indicating Mo has no phytotoxicity and fungitoxicity at the test concentrations. The addition of Mo did not increase and even decreased S concentrations in plant tissues. Arbuscular mycorrhizal inoculation significantly enhanced plant biomass production and Mo concentrations in both shoots and roots, resulting in increased Mo uptake by mycorrhizal plants. Overall, arbuscular mycorrhizal inoculation promoted the absorption of P, N and S by sweet sorghum plants, improved photosystem (PS) II photochemical efficiency and comprehensive photosynthesis performance. In conclusion, MoS2 increased Mo accumulation in plant tissues but produced no toxicity, while arbuscular mycorrhizal inoculation could improve plant performance via enhancing nutrient uptake and photochemical efficiency. Sweet sorghum, together with arbuscular mycorrhizal fungi, shows a promising potential for phytoremediation of Mo-contaminated farmland and revegetation of Mo-mine disturbed areas, as well as biomass production on such sites.


2021 ◽  
Author(s):  
Lang Qiu ◽  
Wenlong Gao ◽  
Zhigang Wang ◽  
Baoqin Li ◽  
Weimin Sun ◽  
...  

Abstract The use of citric acid (CA) chelator to facilitate metal bioavailability is a promising approach for phytoextraction of heavy metal contaminants. However, the role of CA chelator associated with arbuscular mycorrhizal fungi (AMF) inoculation on phytoextraction of vanadium (V) has not been studied. Therefore, in this study, a greenhouse pot experiment was conducted to evaluate the combined effect of CA chelator and AMF inoculation on plant growth and V phytoextraction in the V mining contaminated soil by Medicago sativa Linn. (M. sativa). The experiment was performed via CA (at 0, 5 and 10 mM kg− 1 soil levels) application alone or in combination with AMF inoculation. Plant biomass, root mycorrhizal colonization, P and V accumulation, antioxidant enzyme activity in plant, and soil chemical speciation of V were evaluated. Results depicted (1) a marked decline in plant biomass and root mycorrhizal colonization in 5- and 10-mM CA treatments which were accompanied by a significant increased V accumulation in M. sativa tissues. The effects could be attributed to the enhancement of bioavailable V by mainly transferring from the reducible to acid-soluble V fraction. (2) The presence of CA significantly enhanced P acquisition while the ratio of P/V concentration in plant shoots and roots decreased, owing to the increased V translocation from soil to plant. (3) In both CA treated soil, AMF symbiosis significantly improved dry weight (31.4–73.3%) and P content (37.3-122.5%) in shoot and root of M. sativa, and showed markedly contribution in reduction of malondialdehyde (MDA) content (12.8–16.2%) and higher antioxidants (SOD, POD and CAT) activities in the leaves, suggesting their combination could promote growth performance and stimulate antioxidant response alleviating V stress induced by CA chelator. (4) Taken together, 10 mM kg− 1 CA application and AMF inoculation combination exhibited higher amount of extracted V both in the shoot and root. Thus, citric acid-AMF-plant symbiosis provides a novel remediation strategy for in situ V phytoextraction by M. sativa in the contaminated soil.


2012 ◽  
Vol 36 (4) ◽  
pp. 1103-1112 ◽  
Author(s):  
Andressa Franzoi Sgrott ◽  
Maristela R. Booz ◽  
Rosete Pescador ◽  
Teresinha Catarina Heck ◽  
Sidney Luiz Stürmer

Inoculation with arbuscular mycorrhizal fungi (AMF) of tree seedlings in the nursery is a biotechnological strategy to improve growth, survival after transplanting, biomass production and to reduce the use of fertilizers. Archontophoenix alexandrae and Euterpe edulis are palm species used in southern Brazil to produce the palm heart, the latter being included in the list of threatened species due to the overexploitation of its native population. The purpose of this paper was to evaluate the effect of mycorrhizal inoculation on growth and physiological parameters of A. alexandrae and E. edulis. After germination, the seedlings were inoculated (AMF) or not (CTL) with AMF in the treatments. Values of chlorophyll content, biomass and shoot phosphorus were not statistically different between the AMF and CTL treatments, after five months in the greenhouse. Inoculation with AMF significantly increased the levels of starch and soluble carbohydrates in shoots and roots of both species. Under field conditions, AMF had no effect on stem diameter and height after 12 and 24 months, but total plant biomass and leaf, stem and root biomass were greater in AMF than in CTL plants. The data indicated that AMF inoculation in the nursery has a strong effect on biomass accumulation after growing for 24 months under field conditions. Therefore, AMF inoculation should be considered an important strategy to increase growth and production of these economically important tropical palm species.


2018 ◽  
Vol 57 (1) ◽  
pp. 42-51 ◽  
Author(s):  
C. Caruso ◽  
C. Maucieri ◽  
A. Barco ◽  
A.C. Barbera ◽  
M. Borin

AbstractCrop fertilisation management using organic wastes and arbuscular mycorrhizal fungi (AMF) inoculation can play a crucial role in the sustainability of agroecosystems. However, in conventional agricultural systems, agrochemicals like fungicides could reduce the positive effect of AMF. The aim of this study was to evaluate the agronomic (biomass production) and environmental (soil CO2 emission) effects of AMF inoculation and digestate spreading on triticale cultivation using commercial seeds coated with fungicide. The field experiment was conducted in 2014–2015 at the University of Padua’s experimental farm (Italy), adopting a split-plot design, where the main plot factor was AMF inoculation (inoculated vs. uninoculated) and the subplot factor was fertilisation treatment (no fertilisation (NF), digestate liquid fraction (DL), digestate solid fraction (DS), mineral fertilisation (MF)). Low AMF root colonization was observed, likely due to the effect of fungicide; the only significant effect of AMF inoculation was a lower shoot density. Dry biomass production was significantly higher in the MF treatment (21.8 ± 1.04 Mg/ha) and lower in the NF treatment (14.5 ± 0.73 Mg/ha) compared to DS and DL treatments, which were not significantly different with an average yield of 17.2 ± 2.10 Mg/ha. During the cropping season, soil CO2 emissions were not significantly affected by either AMF inoculation or fertilisation treatment. The median value of soil CO2 emissions was 447.3 mg/m2 per hour.


2009 ◽  
Vol 60 (5) ◽  
pp. 427 ◽  
Author(s):  
Arnon Dag ◽  
Uri Yermiyahu ◽  
Alon Ben-Gal ◽  
Issac Zipori ◽  
Yoram Kapulnik

We evaluated arbuscular mycorrhizal fungi (AMF) for enhancement of irrigated olive (Olea europaea L.) tree growth and vigour under arid horticultural conditions. The response of 12 common commercial olive cultivars to AMF (Glomus mosseae and Glomus intraradices) inoculation was measured in a nursery experiment. Long-term post-transplanting response to AMF inoculation (G. intraradices alone or G. intraradices + G. mosseae) at the seedling stage was also assessed for 3 cultivars in an irrigated orchard in an arid region. Two control treatments without AMF inoculation were evaluated: one with fertilisers provided as in commercial olive nurseries, the other with no fertiliser application during the time of the inoculation treatments. Inoculated v. uninoculated plants in the nursery showed increases in height, and root and shoot biomass. Intensity of response was highly cultivar-specific. Olive trees inoculated with AMF also performed better than untreated plants in the orchard experiment. Inoculated plants in the nursery showed consistent increases in P and K content both in leaves and roots. Fertilisation at the first growth stage, after rooting, did not contribute to seedling growth and therefore, the practice of stopping fertilisation to promote AMF inoculation was found acceptable. With the correct choice of cultivar–inoculum combination, AMF inoculation technology can benefit olive cultivation, particularly in arid regions where native AMF levels are low.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document