scholarly journals Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system

2019 ◽  
Vol 65 (No. 10) ◽  
pp. 483-489 ◽  
Author(s):  
Taotao Yang ◽  
Yanhua Zeng ◽  
Yanni Sun ◽  
Jun Zhang ◽  
Xueming Tan ◽  
...  

Climate warming significantly affects nitrogen (N) cycling, while its effects on the use efficiency of fertilizer N are still unclear in agroecosystems. In the present study, we examined for the first time the response of fertilizer N use efficiency to experimental warming using <sup>15</sup>N labeling with a free-air temperature increase facility (infrared heaters) in a double rice cropping system. <sup>15</sup>N-urea was applied in micro-plots to trace the uptake and loss of fertilizer N. Results showed that moderate warming (i.e. an increase of 1.4°C and 2.1°C in canopy temperature for early and late rice, respectively) did not significantly affect grain yield and biomass. Warming significantly reduced N uptake from fertilizer for both early and late rice, while increased N uptake from soil. The N recovery rate of fertilizer was reduced from 35.5% in the control and to 32.3% in the warming treatments for early rice and from 47.2% to 43.1% for late rice, respectively. Warming did not affect fertilizer N loss rate in the early rice season, whereas significantly increased it from 38.9% in the control and to 42.7% in the warming treatments in the late rice season, respectively. Therefore, we suggest that climate warming may reduce fertilizer N use efficiency and increase N losses to the environment in the rice paddy.

2020 ◽  
Vol 706 ◽  
pp. 136063 ◽  
Author(s):  
Bin Wang ◽  
Chen Guo ◽  
Yunfan Wan ◽  
Jianling Li ◽  
Xiaotang Ju ◽  
...  

2019 ◽  
Vol 65 (No. 2) ◽  
pp. 55-62 ◽  
Author(s):  
Hu Cheng ◽  
Xia Xiange ◽  
Chen Yunfeng ◽  
Qiao Yan ◽  
Liu Donghai ◽  
...  

Optimal soil nitrogen management is vital to crop production and environment protection. Little knowledge is available on crop yield, nitrogen uptake, use efficiency and balance in paddy rice-upland wheat cropping system of China. A thirty-five-year long-term field experiment was designed with nine treatments, including an unfertilized treatment (control), nitrogen (N), phosphorus (P), potassium (K) fertilizer, manure (M), and manure combined with mineral fertilizer treatments. Crop yield, N uptake, use efficiency, and N surplus or deficit amount were determined. The results indicated that rice, wheat yield and N uptake amount in the manure combined with mineral fertilizer treatments were higher than that in the manure alone or mineral fertilizer alone treatments. N use efficiency was the highest in the treatment with manure alone. Soil N input indicated a surplus in the mineral fertilizer in combination with manure treatment, but soil N input indicated a deficit in the control, NPK and M treatments. Considering crop yields, N use efficiency and N balance, recommended N application amount is almost 220 kg N/ha/year in the paddy rice-upland wheat cropping system. Taking into account labour and fertilizer sources, half mineral N and half organic N applications were recommended.


1998 ◽  
Vol 131 (4) ◽  
pp. 375-387 ◽  
Author(s):  
K. SIELING ◽  
H. SCHRÖDER ◽  
M. FINCK ◽  
H. HANUS

Increasing the efficiency with which crops use supplied nitrogen (N) can minimize the impact on the environment. In the growing seasons 1990/91 to 1992/93, the effects of different cropping systems on yield, N uptake by the grain and apparent N-use efficiency (NUE) of the grain of winter wheat and winter barley were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape–winter wheat–winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, spring, autumn+spring), mineral N fertilization (0–240 kg N ha−1) and application of fungicides (none, applications against pathogens of the stems, leaves and ears) were all varied. Each year, the treatments were applied to all three crops of the rotation and were located on the same plots.Averaged over all factors, wheat yield was >7 t ha−1 dry matter in all years and N uptake of the harvested grain varied between 140 and 168 kg N ha−1. Pig slurry application in autumn increased grain yield and N uptake more than spring slurry in two out of three years. Mineral N unfertilized wheat yielded only 5·3–6·3 t ha−1 depending on the year, mineral N fertilization increased wheat yield up to 8 t ha−1. Barley yield was lower than wheat yield, ranging from 4·5 t ha−1 in 1993 to 6·3 t ha−1 in 1992. Unlike wheat, spring slurry N affected barley yield and N uptake more than autumn slurry.Wheat apparently utilized 12–21% and barley up to 13% of the applied slurry N for its grain development. In 1991, the highest apparent slurry N-use efficiency (SNUE) of wheat and barley occurred after the late spring slurry application. However, in the following years, autumn SNUE of wheat was similar to (1992) or higher than (1993) spring SNUE, presumably because of vigorous tiller growth before winter. Additionally applied mineral fertilizer N decreased SNUE.Apparent mineral fertilizer N-use efficiency (FNUE) was higher than SNUE and ranged in wheat from 40 to 59% and in barley between 19 and 37% of the applied mineral fertilizer N. FNUE decreased with increasing N fertilization.To improve the N-use efficiency of both slurry N and mineral fertilizer N, more information is needed about the combined use of both N sources, with special emphasis on split applications of slurry as is common practice for mineral N fertilizer.


1996 ◽  
Vol 5 (3-4) ◽  
pp. 247-257 ◽  
Author(s):  
F.X. Maidl ◽  
A. Panse ◽  
J. Dennert ◽  
R. Ruser ◽  
G. Fischbeck

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


2001 ◽  
Vol 49 (4) ◽  
pp. 369-378 ◽  
Author(s):  
S. N. SHARMA ◽  
R. PRASAD

Field experiments were conducted for two crop years at the Indian Agricultural Research Institute, New Delhi to study the effect of enriching wheat residue with legume residue on the productivity and nitrogen uptake of a rice-wheat cropping system and soil fertility. The incorporation of wheat residue had an adverse effect on the productivity of the rice-wheat cropping system. When it was incorporated along with Sesbania green manure, not only did its adverse effect disappear but the response to fertilizer N was also increased. There was no response to fertilizer N when Sesbania green manure was incorporated. When wheat residue was incorporated along with Sesbania green manuring, rice responded significantly to fertilizer N up to 120 kg N ha-1 in the first year and to 60 kgN ha-1 in the second year and at these levels of N, Sesbania + wheat residue gave 0.8 to 1.2 t ha-1 more grain, 0.6-1.0 t ha-1 more straw and 8-15 kg ha-1 more N uptake of rice resulting in 0.04-0.17% more organic C, 3-8 kg ha-1 more available P and 17-25 kg ha-1 more available K content in the soil than wheat residue alone at the same rates of N application. The respective increaseas caused by Sesbania green manure + wheat residue over Sesbania green manure alone were 0.3-0.5 t ha-1 in the grain and straw yield, 1-9 kg ha-1 in the N uptake of rice, 0.02-0.10% in organic C, 1-8 kg ha-1 in available P and 35- 70 kg ha-1 in available K content in the soil. These treatments also gave higher residual effects in succeeding wheat than wheat residue alone. The incorporation of residues of both wheat and Sesbania is thus recommended to eliminate the adverse effect of wheat residue and to increase the beneficial effects of Sesbania green manuring.


2020 ◽  
Author(s):  
Jie Wu ◽  
Zi-Sheng Zhang ◽  
Jing-Qiu Xia ◽  
Alamin Alfatih ◽  
Ying Song ◽  
...  

AbstractNitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavor in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the NIN-like protein OsNLP4 significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signaling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 is a master regulator of NUE in rice and sheds light on crop NUE improvement.


2002 ◽  
Vol 45 (9) ◽  
pp. 29-35 ◽  
Author(s):  
R.K. Shrestha ◽  
J.K. Ladah

The input-intensive rainfed tropical ecosystem, where wet season (WS) rice (Oriza sativa L.) – dry season (DS) diversified high-value upland crops like vegetables predominate, has resulted in a problem of a large leakage of N into the environment, thereby polluting the water. Excessive use of N fertilizer in high-value crops grown in DS is economically motivated. Out of twenty water sources evaluated in a watershed with a total area of 265 ha located in Magnuang, Ilocos Norte, Philippines, twelve had near or above the World Health Organization’s (WHO) NO3-N limit for drinking water of 10 ppm. Soil mineral N (upper 100 cm) observed in seven rice-sweet pepper (Capsicum annuum L.) farmers’ fields ranged from 111 to 694 kg ha-1 which decreased by 10 to 68% in plots with dry-to-wet (DTW) crops like indigo, indigo+mungo and corn. In fallow plots where mineral N was either maintained or increased, it showed movement to lower soil profiles demonstrating NO3 leaching without a crop. On average, maize (Zea mays L.) captured 176 kg N ha-1 and indigo (Indigofera tinctoria L.) 194 kg N ha-1. In both fallow and planted plots, mineral N declined to low levels at 100% water-filled pore spaces (WFPS) before rice transplanting. A strategy for including indigo plus maize as a N-catch crop is proposed to decrease NO3 leaching and maximize N use efficiency in a rice-sweet pepper cropping system.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Peter Omara ◽  
Lawrence Aula ◽  
Fikayo B. Oyebiyi ◽  
Elizabeth M. Eickhoff ◽  
Jonathan Carpenter ◽  
...  

Biochar (B) has shown promise in improving crop productivity. However, its interaction with inorganic nitrogen (N) in temperate soils is not well-studied. The objective of this paper was to compare the effect of fertilizer N-biochar-combinations (NBC) and N fertilizer (NF) on maize (Zea mays L.) grain yield, N uptake, and N use efficiency (NUE). Trials were conducted in 2018 and 2019 at Efaw and Lake Carl Blackwell (LCB) in Oklahoma, USA. A randomized complete block design with three replications and ten treatments consisting of 50, 100, and 150 kg N ha−1 and 5, 10, and 15 Mg B ha−1 was used. At LCB, yield, N uptake, and NUE under NBC increased by 25%, 28%, and 46%, respectively compared to NF. At Efaw, yield, N uptake, and NUE decreased under NBC by 5%, 7%, and 19%, respectively, compared to NF. Generally, results showed a significant response to NBC at ≥10 Mg B ha−1. While results were inconsistent across locations, the significant response to NBC was evident at LCB with sandy loam soil but not Efaw with silty clay loam. Biochar application with inorganic N could improve N use and the yield of maize cultivated on sandy soils with poor physical and chemical properties.


2020 ◽  
Vol 21 (5) ◽  
pp. 1824
Author(s):  
Yubin Wang ◽  
Qingqing Yao ◽  
Yushi Zhang ◽  
Yuexia Zhang ◽  
Jiapeng Xing ◽  
...  

Modified gibberellin (GA) signaling leads to semi-dwarfism with low nitrogen (N) use efficiency (NUE) in crops. An understanding of GA-mediated N uptake is essential for the development of crops with improved NUE. The function of GA in modulating N uptake capacity and nitrate (NO3−) transporters (NRTs) was analyzed in the GA synthesis-deficient mutant zmga3ox grown under low (LN) and sufficient (SN) N conditions. LN significantly suppressed the production of GA1, GA3, and GA4, and the zmga3ox plants showed more sensitivity in shoots as well as LN stress. Moreover, the higher anthocyanin accumulation and the decrease of chlorophyll content were also recorded. The net NO3− fluxes and 15N content were decreased in zmga3ox plants under both LN and SN conditions. Exogenous GA3 could restore the NO3− uptake in zmga3ox plants, but uniconazole repressed NO3− uptake. Moreover, the transcript levels of ZmNRT2.1/2.2 were downregulated in zmga3ox plants, while the GA3 application enhanced the expression level. Furthermore, the RNA-seq analyses identified several transcription factors that are involved in the GA-mediated transcriptional operation of NRTs related genes. These findings revealed that GAs influenced N uptake involved in the transcriptional regulation of NRTs and physiological responses in maize responding to nitrogen supply.


Sign in / Sign up

Export Citation Format

Share Document