scholarly journals Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency 

2011 ◽  
Vol 52 (No. 8) ◽  
pp. 368-376 ◽  
Author(s):  
A. Gunes ◽  
N. Cicek ◽  
A. Inal ◽  
M. Alpaslan ◽  
F. Eraslan ◽  
...  

Uptake of mineral nutrients in chickpea cultivars might be an important response in drought tolerance. An experiment under controlled conditions was carried out to study the genotypic response of 11 chickpea (Cicer arietinum L.) cultivars to drought and its relations with N, P, K, Ca, Mg, Fe, Zn, Mn and B uptake and uptake efficiency. Plants were grown either optimal or drought stress implemented at pre- (early drought stress, EDS) and post-anthesis (late drought stress, LDS) stages. Growth reduction of the cultivars as a response to drought significantly differed. The results of the study indicated that EDS had less detrimental effects on growth and nutrient uptake than LDS conditions. In general, drought tolerant chickpea cultivars accumulated more N, P, K, Ca, Zn, Mn and B in both drought stress treatments except for Zn and Mn uptake in LDS treatment. The total nutrient uptake efficiency of the cultivars were also very significantly correlated with the growth reduction ration (GR) both in EDS and LDS treatments giving correlation coefficients (r) of –7859 and –0.7678, p < 0.01, respectively.

2016 ◽  
Vol 3 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Akbar Shabani ◽  
◽  
Alireza Zebarjadi ◽  
Ali Mostafaei ◽  
Mohsen Saeidi ◽  
...  

2008 ◽  
Vol 59 (8) ◽  
pp. 707 ◽  
Author(s):  
R. Lin ◽  
H. Yang ◽  
T. N. Khan ◽  
K. H. M. Siddique ◽  
G. Yan

Chickpea (Cicer arietinum L.) is one of the major grain legume crops in the world. In this study, the genetic diversity of 24 Australian chickpea cultivars released between 1987 and 2005 was investigated with microsatellite-anchored fragment length polymorphism (MFLP) DNA markers. Among the cultivars examined, 30 cultivar-specific markers were identified and all were unequivocally identified using the DNA fingerprints developed in this study. Most of the cultivars were grouped into two major clusters; cv. Flipper was separated from the rest based on total character differences of DNA polymorphism. The MFLP approach proved suitable in the analysis of genetic diversity among the chickpea cultivars studied and the genetic relationship identified will be useful for chickpea breeding programs in selecting parent materials.


2019 ◽  
Vol 20 (10) ◽  
pp. 2541 ◽  
Author(s):  
Muhammad Nadeem ◽  
Jiajia Li ◽  
Muhammad Yahya ◽  
Alam Sher ◽  
Chuanxi Ma ◽  
...  

Climate change, food shortage, water scarcity, and population growth are some of the threatening challenges being faced in today’s world. Drought stress (DS) poses a constant challenge for agricultural crops and has been considered a severe constraint for global agricultural productivity; its intensity and severity are predicted to increase in the near future. Legumes demonstrate high sensitivity to DS, especially at vegetative and reproductive stages. They are mostly grown in the dry areas and are moderately drought tolerant, but severe DS leads to remarkable production losses. The most prominent effects of DS are reduced germination, stunted growth, serious damage to the photosynthetic apparatus, decrease in net photosynthesis, and a reduction in nutrient uptake. To curb the catastrophic effect of DS in legumes, it is imperative to understand its effects, mechanisms, and the agronomic and genetic basis of drought for sustainable management. This review highlights the impact of DS on legumes, mechanisms, and proposes appropriate management approaches to alleviate the severity of water stress. In our discussion, we outline the influence of water stress on physiological aspects (such as germination, photosynthesis, water and nutrient uptake), growth parameters and yield. Additionally, mechanisms, various management strategies, for instance, agronomic practices (planting time and geometry, nutrient management), plant growth-promoting Rhizobacteria and arbuscular mycorrhizal fungal inoculation, quantitative trait loci (QTLs), functional genomics and advanced strategies (CRISPR-Cas9) are also critically discussed. We propose that the integration of several approaches such as agronomic and biotechnological strategies as well as advanced genome editing tools is needed to develop drought-tolerant legume cultivars.


LWT ◽  
2007 ◽  
Vol 40 (6) ◽  
pp. 937-945 ◽  
Author(s):  
Abdul Wajid Khalil ◽  
Aurang Zeb ◽  
Fazal Mahmood ◽  
Saima Tariq ◽  
Amal Badshah Khattak ◽  
...  

Author(s):  
D Yücel

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietary proteins in semi-arid Mediterranean climatic conditions. The main goal of any breeding programs in the world is to produce high yield and better quality genotypes for farmers and commercial growers to be released as cultivars. Present research has been conducted to select more desirable characteristics that may contribute to the improvement of drought tolerant chickpea. Thirty-two chickpea genotypes along with two control varieties were evaluated in winter and late sowing conditions in 2015 and 2016, in randomized complete block design with three replications. Phenotypic coefficients of variation were found to be higher than genotypic coefficients of variation for all the traits. The highest heritability along with high genetic advance was found for hundred seed weight followed by podding day, plant height, flowering day and first pod height in normal and stress conditions. These traits can be improved by giving special attention during selection.


Sign in / Sign up

Export Citation Format

Share Document