scholarly journals Comparative metabolomic analysis of caecal digesta between Jinhua pig and Landrace pig

2019 ◽  
Vol 64 (No. 8) ◽  
pp. 332-342
Author(s):  
Yujie Gong ◽  
Xiaoting Zou ◽  
Wenrui Xia ◽  
Xueting Wen ◽  
Xiaojun Zhang ◽  
...  

The metabolic difference in caecal digesta between Jinhua pig and Landrace pig was compared. Twenty weaned piglets at 28 days of age, including ten Landrace pigs (a Western pig breed) and ten Jinhua pigs (a Chinese native pig breed), were randomly selected and allocated into two groups. The pigs were fed the same corn-soybean diet on the same pig farm. At the age of 240 days, all pigs of each group were slaughtered, the digesta in the caecum of the twenty pigs were collected for metabolomic analysis and determination of short-chain fatty acids (SCFAs). The results showed that a total of 56 different metabolites (22 metabolites named and 34 metabolites without identification) were detected in caecal digesta using a gas chromatography time-of-flight/mass spectrometry (GC-TOF-MS)-based metabolomic approach. Forty-six of the 56 metabolites were upregulated significantly (P < 0.05) in Landrace group compared with Jinhua group. The metabolic pathways with different impact value in which different metabolites were mainly involved were tyrosine metabolism, citrate cycle and steroid biosynthesis. In addition, we found that Landrace accumulated more SCFAs in caecal digesta, while the concentrations of acetic acid (P < 0.01) and butyric acid (P < 0.05) in caecal digesta of Jinhua pig were markedly lower than those of Landrace pig. Collectively, our study was the first to compare the metabolic difference in caecal digesta between Jinhua pig and Landrace pig using a metabolomics approach, which might be used as a potential metabolomics mechanism to research different breeds of pigs.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Monika Bielecka ◽  
Bartosz Pencakowski ◽  
Marta Stafiniak ◽  
Klemens Jakubowski ◽  
Mehdi Rahimmalek ◽  
...  

Subgenus Perovskia of the extended genus of Salvia comprises several Central Asian medicinal and aromatic species, of which S. yangii and S. abrotanoides are the most widespread. These plants are cultivated in Europe as robust ornamentals, and several cultivars are available. However, their medicinal potential remains underutilized because of limited information about their phytochemical and genetic diversity. Thus, we combined an ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics with DNA barcoding approach based on trnH-psbA and ITS2 barcodes to clarify the relationships between these two taxa. Metabolomic analysis demonstrated that aerial parts are more similar than roots and none of the major compounds stand out as distinct. Sugiol in S. yangii leaves and carnosic acid quinone in S. abrotanoides were mostly responsible for their chemical differentiation, whereas in roots the distinction was supported by the presence of five norditerpenoids in S. yangii and two flavonoids and one norditerpenoid in S. abrotanoides. To verify the metabolomics-based differentiation, we performed DNA authentication that revealed S. yangii and S. abrotanoides to be very closely related but separate species. We demonstrated that DNA barcoding coupled with parallel LC-MS profiling constitutes a powerful tool in identification of taxonomically close Salvia species.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Dae Young Lee ◽  
Bo-Ram Choi ◽  
Jae Won Lee ◽  
Yurry Um ◽  
Dahye Yoon ◽  
...  

Abstract In Platycodi Radix (root of Platycodon grandiflorum), there are a number of platycosides that consist of a pentacyclic triterpenoid aglycone and two sugar moieties. Due to the pharmacological activities of platycosides, it is critical to assess their contents in PR, and develop an effective method to profile various platycosides is required. In this study, an analytical method based on ultra performance liquid chromatography coupled with quadrupole time-of-flight/mass spectrometry (UPLC-QTOF/MS) with an in-house library was developed and applied to profile various platycosides from four different Platycodi Radix cultivars. As a result, platycosides, including six isomeric pairs, were successfully analyzed in the PRs. In the principal component analysis, several platycosides were represented as main variables to differentiate the four Platycodi Radix cultivars. Their different levels of platycosides were also represented by relative quantification. Finally, this study indicated the proposed method based on the UPLC-QTOF/MS can be an effective tool for identifying the detail characterization of various platycosides in the Platycodi Radix.


2015 ◽  
Vol 7 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Robert W. Smith ◽  
Lisa B. Cox ◽  
Aswandi Yudin ◽  
James C. Reynolds ◽  
Mark Powell ◽  
...  

FAIMS separation prior to mass spectrometry enables selective transmission of NMP in cefepime without interference from NMP formed by in-source CID.


Sign in / Sign up

Export Citation Format

Share Document