scholarly journals Changes in tree species composition, stand structure, qualitative and quantitative production of mixed spruce, fir and beech stand on Stará Píla research plot

2012 ◽  
Vol 52 (No. 2) ◽  
pp. 74-91 ◽  
Author(s):  
I. Štefančík

The paper is a contribution to the research on problems of thinnings in mixed (spruce-fir-beech) stands situated in the 5<sup>th</sup> forest altitudinal zone (beech with fir) in the central part of Slovakia. The research was carried out on two series of permanent research plots established in 1972. Each of the series consists of three partial plots where one plot was tended by free crown thinning in the framework of whole-area tending. On the second plot a non-whole-area tending was realised while the third ones were left without planned silvicultural treatment as controls. Dynamic changes in tree species composition, stand structure, qualitative and quantitative production including silvicultural analysis of seven thinning interventions were evaluated for a period of 29 years. A&nbsp;special attention was paid to development of future crop trees which are the main bearers of stand quality and quantity. The changes were compared with respect to differences between the plots with whole-area and non-whole-area long-term silvicultural treatment and the control plot (without treatments).

2012 ◽  
Vol 49 (No. 3) ◽  
pp. 108-124 ◽  
Author(s):  
I. Štefančík ◽  
L. Štefančík

The paper is a&nbsp;contribution to research on thinnings in mixed (spruce-fir-beech) stands situated in the fifth forest altitudinal zone in the central part of Slovakia. Three plots were tended by free crown thinning while one plot was left without any planned silvicultural treatment (as a control). Dynamic changes in tree species composition, stand structure and quantitative production were evaluated for a period of 30 years. A&nbsp;special attention was paid to development of crop trees that are the main bearers of stand quality and quantity. The changes were compared with respect to differences between plots with long-term silvicultural treatments and control plot (without treatments). &nbsp; &nbsp;


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xavier Morin ◽  
Lorenz Fahse ◽  
Hervé Jactel ◽  
Michael Scherer-Lorenzen ◽  
Raúl García-Valdés ◽  
...  

2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Dixi Modi ◽  
Suzanne Simard ◽  
Jean Bérubé ◽  
Les Lavkulich ◽  
Richard Hamelin ◽  
...  

ABSTRACT Stump removal is a common forest management practice used to reduce the mortality of trees affected by the fungal pathogen-mediated root disease, Armillaria root rot, but the impact of stumping on soil fungal community structure is not well understood. This study analyzed the long-term impact of stumping and tree species composition on the abundance, diversity and taxonomic composition of soil fungal communities using internal transcribed spacer (ITS) marker-based DNA metabarcoding in a 48-year-old trial at Skimikin, British Columbia. A total of 108 samples were collected from FH (fermented and humus layers), and soil mineral horizons (A and B) from stumped and unstumped plots of six tree species treatments (pure stands and admixtures of Douglas-fir, western red-cedar and paper birch). Fungal α-diversity in the A horizon significantly increased with stumping regardless of tree species composition, while β-diversity was significantly affected by stumping in all the horizons. We also observed that the relative abundance of the saprotrophic fungal community declined while that of the ectomycorrhizal fungal community increased with stumping. In conclusion, increase in ectomycorrhizal fungal associations, which are positively associated with tree productivity, suggests that stumping can be considered a good management practice for mitigating root disease and promoting tree regeneration.


2013 ◽  
Vol 59 (No. 4) ◽  
pp. 159-168 ◽  
Author(s):  
F. Pastorella ◽  
A. Paletto

Stand structure and species diversity are two useful parameters to provide a synthetic measure of forest biodiversity. The stand structure is spatial distribution, mutual position, diameter and height differentiation of trees in a forest ecosystem and it highly influences habitat and species diversity. The forest stand and species diversity can be measured through indices that provide important information to better address silvicultural practices and forest management strategies in the short and long-term period. These indices can be combined in a composite index in order to evaluate the complex diversity at the stand level. The aim of the paper is to identify and to test a complex index (S-index) allowing to take into account both the tree species composition and the stand structure. S-index was applied in a case study in the north-east of Italy (Trentino province). The results show that the Norway spruce forests in Trentino province are characterized by a medium-low level of complexity (S-index is in a range between 0.14 and 0.46) due to a low tree species composition rather than to the stand structure (diametric differentiation and spatial distribution of trees). &nbsp;


2015 ◽  
Vol 45 (9) ◽  
pp. 1215-1224 ◽  
Author(s):  
Per-Ola Hedwall ◽  
Grzegorz Mikusiński

Protected forest areas (PFAs) are key features of biodiversity conservation, and knowledge about long-term development is crucial in evaluating their efficiency and management needs. Longitudinal data on forest structure in PFAs is uncommon and often from small areas. Here we use data from the Swedish National Forest Inventory to study changes in more than 750 000 ha of PFAs over 60 years. Structures important for biodiversity, e.g., number of large trees and the volume of hard deadwood, including both standing and down wood, have more than doubled. The initial volume of deadwood, however, was very low. The overall tree species composition was stable over time, and only among the largest trees were there indications of a shift towards the late successional Norway spruce (Picea abies (L.) Karst.). Deadwood increased independent of species, size of wood, and site characteristics. This increase was positively related to the volume of living trees and forest age. We conclude that Swedish PFAs, in the absence of active management and under fire suppression at the landscape scale, develop structural components that are crucial for conservation of biodiversity. However, although tree species composition appears stable, present disturbance regimes in the PFAs are considerably different from those in naturally dynamic forests, which may have implications for long-term biodiversity maintenance.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1116 ◽  
Author(s):  
Mark B. Burnham ◽  
Martin J. Christ ◽  
Mary Beth Adams ◽  
William T. Peterjohn

Many factors govern the flow of deposited nitrogen (N) through forest ecosystems and into stream water. At the Fernow Experimental Forest in WV, stream water nitrate (NO3−) export from a long-term reference watershed (WS 4) increased in approximately 1980 and has remained elevated despite more recent reductions in chronic N deposition. Long-term changes in species composition may have altered forest N demand and the retention of deposited N. In particular, the abundance and importance value of Acer saccharum have increased since the 1950s, and this species is thought to have a low affinity for NO3−. We measured the relative uptake of NO3− and ammonium (NH4+) by six important temperate broadleaf tree species and estimated stand uptake of total N, NO3−, and NH4+. We then used records of stream water NO3− and stand composition to evaluate the potential impact of changes in species composition on NO3− export. Surprisingly, the tree species we examined all used both mineral N forms approximately equally. Overall, the total N taken up by the stand into aboveground tissues increased from 1959 through 2001 (30.9 to 35.2 kg N ha−1 yr−1). However, changes in species composition may have altered the net supply of NO3− in the soil since A. saccharum is associated with high nitrification rates. Increases in A. saccharum importance value could result in an increase of 3.9 kg NO3−-N ha−1 yr−1 produced via nitrification. Thus, shifting forest species composition resulted in partially offsetting changes in NO3− supply and demand, with a small net increase of 1.2 kg N ha−1 yr−1 in NO3− available for leaching. Given the persistence of high stream water NO3− export and relatively abrupt (~9 year) change in stream water NO3− concentration circa 1980, patterns of NO3− export appear to be driven by long-term deposition with a lag in the recovery of stream water NO3− after more recent declines in atmospheric N input.


Sign in / Sign up

Export Citation Format

Share Document