scholarly journals Utilization of wild relatives and primitive forms of wheat in Czech wheat breeding

2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 284-287 ◽  
Author(s):  
P. Bartoš ◽  
V. Šíp ◽  
A. Hanzalová ◽  
L. Kučera ◽  
J. Ovesná ◽  
...  

see the full text

2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 103-107
Author(s):  
K. Sato ◽  
H. Tsujimoto ◽  
Von Bothmer R

see the full text


2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 112-117 ◽  
Author(s):  
A. Arzani ◽  
M.-R. Khalughi ◽  
B. Shiran ◽  
N. Kharazian
Keyword(s):  

see the full text


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1656
Author(s):  
Alireza Pour-Aboughadareh ◽  
Farzad Kianersi ◽  
Peter Poczai ◽  
Hoda Moradkhani

Among cereal crops, wheat has been identified as a major source for human food consumption. Wheat breeders require access to new genetic diversity resources to satisfy the demands of a growing human population for more food with a high quality that can be produced in variable environmental conditions. The close relatives of domesticated wheats represent an ideal gene pool for the use of breeders. The genera Aegilops and Triticum are known as the main gene pool of domesticated wheat, including numerous species with different and interesting genomic constitutions. According to the literature, each wild relative harbors useful alleles which can induce resistance to various environmental stresses. Furthermore, progress in genetic and biotechnology sciences has provided accurate information regarding the phylogenetic relationships among species, which consequently opened avenues to reconsider the potential of each wild relative and to provide a context for how we can employ them in future breeding programs. In the present review, we have sought to represent the level of genetic diversity among the wild relatives of wheat, as well as the breeding potential of each wild species that can be used in wheat-breeding programs.


2021 ◽  
pp. 1-8
Author(s):  
Amandeep K. Riar ◽  
Parveen Chhuneja ◽  
Beat Keller ◽  
Kuldeep Singh

Abstract Triticum monococcum L. and T. boeoticum L., diploid wild relatives of bread wheat (T. aestivum L.), possess resistance to leaf rust (also known as brown rust) caused by Puccinia triticina Eriks. Haustorium formation-based resistance mechanisms (i.e. pre-haustorial and post-haustorial resistance) to leaf rust have been studied and reported in various T. monococcum accessions. In the present study, the mechanism of leaf rust resistance in T. monococcum and T. boeoticum accessions was studied using confocal laser scanning microscopy. Components of resistance studied at a histological level against leaf rust pathotypes, a Mexican pathotype (TCB/TD) and a Swiss pathotype (97512-19), indicated different types of resistance mechanism operative in the two accessions. The resistance in T. monococcum ranged from pre-haustorial resistance against 97512-19 to post-haustorial resistance against TCB/TD. The response in T. boeoticum was post-haustorial with necrosis against the two pathotypes. Pre-haustorial resistance observed in T. monococcum could serve as a potential source of durable rust resistance in wheat breeding.


2018 ◽  
Author(s):  
María-Dolores Rey ◽  
Azahara C. Martín ◽  
Mark Smedley ◽  
Sadiye Hayta ◽  
Wendy Harwood ◽  
...  

AbstractWild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analysed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analysed hybrids, when plants were irrigated with a 1mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.


Author(s):  
Ankica Kondic-Spika ◽  
Srbislav Dencic ◽  
Novica Mladenov ◽  
Dragana Trkulja ◽  
Sanja Mikic ◽  
...  

This study analysed polymorphism of 15 microsatellite loci in the col?lection comprising of 40 genotypes of bread wheat (Triticum aestivum L.), 32 genotypes belonging to other species within Triticum genus and 3 genotypes from Aegilops genus. The results showed significant differences in the variability of the tested loci in bread wheat and related species. In the collection of bread wheat genotypes, 119 alleles were detected with the average number of 7.9 alleles per locus. In wild and cultivated related species 157 alleles were identified, with the average of 10.5 alleles per locus. All analysed parameters of micro?satellite loci variability (PIC value, gene diversity, heterozygosity, etc.) indicated higher level of polymorphism in wild relatives than in the cultivated bread wheat. Analyses of individual genomes indicated that in the bread wheat genetic diversity of the B and D genomes was significantly reduced in relation to the A genome, while the differences in polymorphism between genomes in the wild relatives were significantly lower. The results showed that wild related species can be used as sources for new variability in wheat breeding.


2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 251-251 ◽  
Author(s):  
J. Konopka ◽  
J. Valkoun

see the full text


Crop Science ◽  
2020 ◽  
Author(s):  
Noureddine El Haddad ◽  
Hafssa Kabbaj ◽  
Meryem Zaïm ◽  
Khaoula El Hassouni ◽  
Amadou Tidiane Sall ◽  
...  

1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Sign in / Sign up

Export Citation Format

Share Document