scholarly journals Sugar beet as a raw material for bioethanol production

2013 ◽  
Vol 19 (No. 6) ◽  
pp. 224-234 ◽  
Author(s):  
A. Hinková ◽  
Z. Bubník

Overproduction of sugar causes a reduction in the acreage under sugar beet. That is why new non-food technologies for exploitation of agricultural products are sought. Utilization of beet for liquid fuel production could be one of them. The aim of experiments with sugar beet raw juice fermentation was to verify the possibility to return a part of distiller’s slops back to the fermentation process and thereby to obtain stillage with higher content of dry solids. This would bring about energy savings during slops thickening and drying. Tests with recycling of different portions of stillage (20, 25 and 30%) back to the fermentation stage were carried out. No significant increase in dry solids content in mash was found and therefore no energy savings during thickening can be expected. The only savings can be made in water consumption that is replaced by slops.

scholarly journals The effect of changes in opportunity costs and prices of some agricultural products such as sugar beet, corn,wheat etc. used for bioethanol production on the cost of bioethanol production is not adequately known in Turkey.. Therefore, it was aimed to determine the bioethanol production cost items and unit production costs and also to put forth the effects of variations in raw material prices on cost of bioethanol.. The research data were collected via personal interviews from active bioethanol plants in Turkey. The results of previous studies and documents of related institutions and organizations were also used. The study followed classical cost analysis approach to calculate production cost. Scenario analysis was performed when exploring the effect of raw material prices on bioethanol production cost. Research findings showed that production cost per litre bioethanol produced from sugar beet molasses, corn, wheat and corn-wheat mixture were 2.50 TL, 2.84 TL, 2.95 and 2.84 TL, respectively. The share of raw material expenses in bioethanol cost per liter varied associated with the crops used in the process, it was 28.55% for bioethanol produced from sugar beet molasses, 44.81% for bioethanol produced from corn-wheat mixture and 44.87% bioethanol produced from corn. The research results also showed that the changes that occur in raw material prices significantly affected the bioethanol production cost and opportunity cost of crops created difficulties in biomass supply. Implementing the suitable policies and strategies and making the necessary arrangements in legislation would enhance the economic sustainability of bioethanol production in Turkey.

2017 ◽  
Vol 32 (1) ◽  
pp. 16-16
Author(s):  
Selime Canan ◽  
Vedat Ceyhan

1991 ◽  
Vol 24 (12) ◽  
pp. 33-42 ◽  
Author(s):  
A. B. Larsen ◽  
F. H. Funch ◽  
H. A. Hamilton

Novo Nordisk is one of the world's largest producers of enzymes, insulin and biopharmaceuticals. This production is based mainly on biotechnology and fermentation processes. The waste from the fermentation process is non-toxic, but due to the high content of nitrogen and phosphorus the waste can cause eutrophication if it is discharged in the marine environment. Novo Nordisk has developed a process in which the fermentation sludge, which constitutes a large part of the waste, is used as an organic fertilizer - NOVOsludge - in agriculture. The total amount of sludge is 500,000 m3/year, corresponding to 800,000 kg of nitrogen and 300,000 kg of phosphorus. Around 10,000 hectares of farmland benefit from this. Since a great proportion of the raw materials used in fermentation are based on agricultural products, this use is an example of re-cycling of nutrients. Investigations of the uptake of the nutrients in different types of crops are made in order to develop still more efficient uses. The system which has been developed has also contributed to new rules for the utilization of organic waste material.


2013 ◽  
pp. 71-75
Author(s):  
Zoltán Balla

The biomass is such a row material that is available in large quantities and it can be utilizied by the biotechnology in the future. Nowadays the technology which can process ligno cellulose and break down into fermentable sugars is being researched. One possible field of use of biomass is the liquid fuel production such as ethanol production. Based on the literary life cycle analysis, I compared the starch-based (first generation) to cellulose-based (second generation) bioethanol production in my study considering into account various environmental factors (land use, raw material production, energy balance). After my examination I came to the conclusion that the use of bioethanol, independent of its production technology, is favorable from environmental point of view but the application of second generation bioethanol has greater environmentally benefits.


2019 ◽  
Vol 3 (1) ◽  
pp. 32-36
Author(s):  
Rohmatun Nafi'ah ◽  
Susan Prima Devi

Tebu is one of the many plants found in the Holy area of Central Java, which has a high sugar content. The raw material for making ethanol is sugary, starchy and fibrous. Nira is one of the by-products of a sugar cane factory which has a high sugar content. The study of making ethanol from Nira Tebu as a raw material for medicine using fermentation methods was carried out on a laboratory scale. The purpose of this study was to produce ethanol from Nira Tebu as a raw material for chemical drugs by fermentation method.The procedure of this study was through the pretreatment stage, the hydrolysis stage, and the fermentation stage. The fermentation process with the addition of yeast and lasts for 7 days with the volume of sugarcane juice used is 5 liters. Yeast used for fermentation is 1,2,3,4 and 5 grams and varies from 1-7 days of fermentation time. Furthermore, ethanol levels and acidity levels (pH) were determined from Nira Tebu. So that from the results of the study it can be obtained the most optimal ethanol levels with variations in the amount of yeast and the length of fermentation time.


Author(s):  
Stewart A. Isaacs ◽  
Mark D. Staples ◽  
Florian Allroggen ◽  
Dharik S. Mallapragada ◽  
Christoph P. Falter ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1172
Author(s):  
Leonard Moser ◽  
Christina Penke ◽  
Valentin Batteiger

One of the more promising technologies for future renewable fuel production from biomass is hydrothermal liquefaction (HTL). Although enormous progress in the context of continuous experiments on demonstration plants has been made in the last years, still many research questions concerning the understanding of the HTL reaction network remain unanswered. In this study, a unique process model of an HTL process chain has been developed in Aspen Plus® for three feedstock, microalgae, sewage sludge and wheat straw. A process chain consisting of HTL, hydrotreatment (HT) and catalytic hydrothermal gasification (cHTG) build the core process steps of the model, which uses 51 model compounds representing the hydrolysis products of the different biochemical groups lipids, proteins, carbohydrates, lignin, extractives and ash for modeling the biomass. Two extensive reaction networks of 272 and 290 reactions for the HTL and HT process step, respectively, lead to the intermediate biocrude (~200 model compounds) and the final upgraded biocrude product (~130 model compounds). The model can reproduce important characteristics, such as yields, elemental analyses, boiling point distribution, product fractions, density and higher heating values of experimental results from continuous experiments as well as literature values. The model can be applied as basis for techno-economic and environmental assessments of HTL fuel production, and may be further developed into a predictive yield modeling tool.


2020 ◽  
Author(s):  
Andry Anggoro Arahim ◽  
Widayat ◽  
Hadiyanto
Keyword(s):  

1986 ◽  
Vol 15 (5) ◽  
pp. 649-652 ◽  
Author(s):  
Shin-ya Yokoyama ◽  
Akira Suzuki ◽  
Masanori Murakami ◽  
Tomoko Ogi ◽  
Katsuya Koguchi

Sign in / Sign up

Export Citation Format

Share Document