scholarly journals The role of cyclooxygenase inhibitors in lipopolysaccharide-induced hypophagia in chicken

2018 ◽  
Vol 60 (No. 8) ◽  
pp. 342-350 ◽  
Author(s):  
M. Zendehdel ◽  
A. Baghbanzadeh ◽  
B. Yeganeh ◽  
S. Hassanpour

Previous studies showed that cyclooxygenase 1 (COX) enzyme has an important role in lipopolysaccharide (LPS)-induced hypophagia in mammals but the effect of COX on LPS-induced hypophagia has not been studied in avian species. The current study was designed to investigate the effects of Indomethacin, a non-selective cyclooxygenase inhibitor, Aspirin (irreversible cyclooxygenase inhibitor), Piroxicam (a selective COX-1 inhibitor), and Celecoxib (a selective COX-2 inhibitor) on LPS-induced hypophagia in 3-h food-deprived (FD<sub>3</sub>) cockerels. One hundred and sixty ROSS 308 chickens were randomly divided into 5 experiments and 4 treatment groups (8 replicates in each group of experiments). Guide cannula was surgically implanted into the lateral ventricle of chickens. In Experiment 1, birds received LPS (5, 10, and 20 ng) intracerebroventricularly (ICV). In Experiment 2, chickens were intraperitoneally (i.p.) injected with Indomethacin (5&nbsp;mg/kg) prior to LPS injection (20 ng; ICV). In Experiment 3, birds were i.p. injected with Aspirin (50 mg/kg) followed by LPS injection (20 ng; ICV). In Experiment 4, chickens were given LPS (20 ng; ICV) after Piroxicam injection (10 mg/kg; i.p.). In Experiment 5, chickens were injected with Celecoxib (10 mg/kg; i.p.) prior to LPS injection (20 ng; ICV). Cumulative feed intake was determined until 8 h post-injection. According to the results, LPS significantly decreased feed intake at 4 and 8 h post injection in birds (P &le; 0.05). Furthermore, LPS-induced hypophagia was attenuated by pre-injection with Indomethacin, Aspirin, and Celecoxib (P&nbsp;&le; 0.05). However, Piroxicam had no effect on LPS-induced hypophagia (P &ge; 0.05). These results suggest that presumably COX-2 mediates LPS-induced hypophagia in broilers.

1998 ◽  
Vol 114 ◽  
pp. A82
Author(s):  
T. Brzozowski ◽  
P.C. Konturek ◽  
R. Pajdo ◽  
N. Nagraba ◽  
A. Szczeklik ◽  
...  

2006 ◽  
Vol 191 (1) ◽  
pp. 263-274 ◽  
Author(s):  
Simone Odau ◽  
Christoph Gabler ◽  
Christoph Holder ◽  
Ralf Einspanier

The aim of the present study was to investigate the enzymes for the local prostaglandin (PG) biosynthesis present in the bovine oviduct during the estrous cycle to influence early reproductive events. Bovine oviducts were classified into four phases: pre-ovulatory, post-ovulatory, early-to-mid luteal, and late luteal phase, subdivided further into ipsi- or contralateral site and separated into ampulla or isthmus. Oviductal cells were gained by flushing the oviductal regions. Quantitative real-time reverse transcriptase-PCR was performed for the secretory and cytosolic phospholipases A2 (sPLA2IB, cPLA2α, and cPLA2β) and cyclooxygenases (COX-1 and COX-2) as the first step enzymes of PG synthesis. COX-1 and cPLA2β showed significant highest mRNA expression around and before ovulation compared with the luteal phase respectively. sPLA2IB and cPLA2α mRNA expression was unregulated during the estrous cycle. Regional differences in mRNA content were found for sPLA2IB with higher mRNA expression in the ampulla than in the isthmus. Western blot analysis revealed the highest COX-1 protein content in the early-to-mid luteal phase. Immunohistochemistry demonstrated that COX-1 was localized in epithelial and smooth muscle cells, whereas COX-2 was only localized in epithelial cells. COX-2 showed a differential distribution within the epithelial cell layer suggesting a regulation on a cellular level, although the COX-2 mRNA and protein amounts did not vary throughout the estrous cycle. A COX activity assay of oviductal cells revealed that COX activity originated predominantly from COX-1 than from COX-2. Treatment of primary oviductal cells with 10 pg/ml 17β-estradiol or 10 ng/ml progesterone resulted in a higher expression of COX-2 and cPLA2α, but not of the other enzymes. The expression pattern of these enzymes suggests that an estrous-cycle dependent and region-specific PG synthesis in the bovine oviduct may be required for a successful reproduction.


2021 ◽  
Vol 28 ◽  
Author(s):  
Josiane Viana Cruz ◽  
Joaquín María Campos Rosa ◽  
Njogu Mark Kimani ◽  
Silvana Giuliatti ◽  
Cleydson Breno Rodrigues dos Santos

: This article presents a simplified view of celecoxib as a potential inhibitor in the treatment of inflammatory diseases. The enzyme cyclooxygenase (COX) has, predominantly, two isoforms called cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). The former plays a constitutive role that is related to homeostatic effects in renal and platelets, while the latter is mainly responsible for induction of inflammatory effects. Since COX-2 plays an important role in the pathogenesis of inflammatory diseases, it has been signaled as a target for the planning of anti-inflammatory intermediates. Many inhibitors developed and planned for COX-2 inhibition have presented side effects to humans, mainly in the gastrointestinal and/or cardiovascular tract. Therefore, it is necessary to design new potential COX-2 inhibitors, which are relatively safe and without side effects. To this end, of the generation of non-steroidal anti-inflammatory drugs from “coxibs”, celecoxib is the only potent selective COX-2 inhibitor that is still commercially available. Thus, the compound celecoxib became a commercial prototype inhibitor for the development of anti-inflammatory agents for COX-2 enzyme. In this review, we provide highlights where such inhibition should provide a structural basis for the design of promising new non-steroidal anti-inflammatory drugs (NSAIDs) which act as COX-2 inhibitors with lesser side effects on the human body.


2008 ◽  
Vol 295 (5) ◽  
pp. G953-G964 ◽  
Author(s):  
N. J. Skill ◽  
N. G. Theodorakis ◽  
Y. N. Wang ◽  
J. M. Wu ◽  
E. M. Redmond ◽  
...  

Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI2), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI2 biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1−/−, and COX-2−/− mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI2 biosynthesis were determined 1–7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI2 biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1−/− mice with NS398 or COX-2−/− mice with SC560 restricted PGI2 biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI2 biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI2 rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone.


2021 ◽  
pp. 209-215
Author(s):  
O. A. Shavlovskaya ◽  
I. A. Bokova ◽  
N. I. Shavlovskiy

The issue nonsteroidal anti-inflammatory drugs (NSAIDs) use safety is associated with a high frequency of adverse events (AEs) from the gastrointestinal tract and cardiovascular risks. Patients with lower back pain (LBP) and osteoarthritis (OA), as a rule, have comorbid diseases, such as arterial hypertension (AH), coronary heart disease (CHD), gastrointestinal tract (GIT) diseases, which significantly complicates the appointment of NSAIDs. The main guideline in NSAIDs appointment is the selective ability to inhibit cyclooxygenase-1 and -2 (COX). The ratio of the activity of NSAIDs when blocking COX-1/COX-2 allows us to judge their potential toxicity. And, then higher the selectivity of NSAIDs, then lower its toxicity. For example, the ratio of COX-1/COX-2 in meloxicam is 0.33, diclofenac – 2.2, tenoxicam – 15, piroxicam – 33, indomethacin – 107. To the predominantly selective COX-2 NSAIDs include meloxicam, which has little effect on the GIT, the lowest relative risk (RR) of complications from the cardiovascular system (CVS). The therapeutic efficacy of meloxicam is comparable to piroxicam and diclofenac. A number of studies have shown the high efficacy of meloxicam, both with per oral (p/o) administration (7.5–15 mg/d), and with intramuscular (i/m) administration (1.5 ml), and when injected into trigger zones. Both with p/o and the injectable form of meloxicam has minimal GIT AEs and absence local reaction in the injection area. The drug can be recommended both as a combination therapy and prescribed in monotherapy.


1995 ◽  
Vol 73 (11) ◽  
pp. 1561-1567 ◽  
Author(s):  
L. Charette ◽  
C. Misquitta ◽  
J. Guay ◽  
D. Riendeau ◽  
T. R. Jones

Indomethacin and related nonsteroidal anti-inflammatory drugs relax prostanoid-dependent intrinsic tone of isolated guinea pig trachea by inhibiting cyclooxygenase (COX). Recently, a second isoform of COX (COX-2) was discovered, which differed from COX-1 with respect to protein structure, transcriptional regulation, and susceptibility to inhibition by pharmacological agents. It is now known that indomethacin nonselectively inhibits COX-1 and COX-2, whereas NS-398 is a selective inhibitor of COX-2. In the present study we compared the activity of a selective (NS-398) and nonselective (indomethacin) COX-2 inhibitor on intrinsic tone of isolated guinea pig trachea. NS-398 ≥ indomethacin produced a reversal of intrinsic tone with a similar concentration-dependent (10 nM to 1 μM) time course (Tmax approximately 20–45 min), potency (EC50 1.7 and 5.6 nM, respectively), and maximal response. Contractions to cholinergic nerve stimulation (45 V, 0.5 ms, 0.1–32 Hz) and histamine were similarly modulated in tissues relaxed with the selective or nonselective COX-2 inhibitors. Immunoblot analyses showed that COX-2 protein synthesis was induced in both the cartilage and smooth muscle portions of the trachea during changes in intrinsic tone. These findings are consistent with pharmacological results and provide the first demonstration that prostanoid tone in isolated guinea pig trachea is dependent on COX-2 activity. The results also suggest that the activity of indomethacin in this preparation is likely related to COX-2 inhibition.Key words: cyclooxygenase 2, relaxation, guinea pig trachea, cyclooxygenase 1.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 554 ◽  
Author(s):  
Harshal Nemade ◽  
Aviseka Acharya ◽  
Umesh Chaudhari ◽  
Erastus Nembo ◽  
Filomain Nguemo ◽  
...  

Application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited by the challenges in their efficient differentiation. Recently, the Wingless (Wnt) signaling pathway has emerged as the key regulator of cardiomyogenesis. In this study, we evaluated the effects of cyclooxygenase inhibitors on cardiac differentiation of hPSCs. Cardiac differentiation was performed by adherent monolayer based method using 4 hPSC lines (HES3, H9, IMR90, and ES4SKIN). The efficiency of cardiac differentiation was evaluated by flow cytometry and RT-qPCR. Generated hPSC-CMs were characterised using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient measurements. Our data show that the COX inhibitors Sulindac and Diclofenac in combination with CHIR99021 (GSK-3 inhibitor) efficiently induce cardiac differentiation of hPSCs. In addition, inhibition of COX using siRNAs targeted towards COX-1 and/or COX-2 showed that inhibition of COX-2 alone or COX-1 and COX-2 in combination induce cardiomyogenesis in hPSCs within 12 days. Using IMR90-Wnt reporter line, we showed that inhibition of COX-2 led to downregulation of Wnt signalling activity in hPSCs. In conclusion, this study demonstrates that COX inhibition efficiently induced cardiogenesis via modulation of COX and Wnt pathway and the generated cardiomyocytes express cardiac-specific structural markers as well as exhibit typical calcium transients and action potentials. These cardiomyocytes also responded to cardiotoxicants and can be relevant as an in vitro cardiotoxicity screening model.


Author(s):  
Yosie Andriani ◽  
Leni Marlina ◽  
Habsah Mohamad ◽  
Hermansyah Amir ◽  
Siti Aisha M Radzi ◽  
...  

  Objective: This study aimed to investigate the anti-inflammatory activity of methanol extract and fractions of bacteria associated with sponge (Haliclona amboinensis) and to evaluate their effect in reducing NO production and inhibiting cyclooxygenase-1 (COX-1), cyclooxgenase-2 (COX-2) and secretory phospholipase A2 (sPLA2) activity.Methods: All bacterial isolates were cultured and supernatants were collected for the extraction of secondary metabolites using diaion HP-20 to obtain methanol extracts. Evaluation of cytotoxicity property was carried out on macrophage cell lines (RAW264.7) by 3-(4,5-dimethylthiazol- 2-yl) 2,5-diphenyl tetrazoliumbromide assay. Anti-inflammatory screening was done by inducible nitric oxide assay on RAW264.7 cell lines with lipopolysaccharide (LPS) stimulation. Dianion HP-20 was used to remove salt content. A selected methanol extract was subjected to further fractionations by C-18 reverse phase and their anti-inflammatory potential was evaluated by COX-1 and COX-2, and sPLA2 enzymatic assay.Results: Seven methanol extracts showed no cytotoxic property against RAW 264.7 cell line (inhibitory concentration 50% > 30 μg/ml) and selected for anti-inflammatory screening assay. Result showed methanol extract HM 1.2 reduced NO production >80% and it has been selected for phytochemical screening, further fractionations and assay. Phytochemical screening showed alkaloids and terpenoids present in the HM 1.2. The HM 1.2 and its fractions (F1, F2, F1C1, F1C2, F1C3, and F1C4) were proven to inhibit COX-1, COX-2, and sPLA2 activity in the range of 60.516-116.886%, 20.554- 116.457%, and 70.2667-114.8148%, respectively.Conclusions: This study revealed that bacteria associated with H. amboinensis have produced anti-inflammatory activity via reducing NO production and inhibiting COX-1, COX-2, and sPLA2 activity. 


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Yuzhong Zheng ◽  
Guizhong Xin ◽  
Guowei Gong ◽  
Tina TX Dong ◽  
Ping Li ◽  
...  

Background. Guizhi Fuling capsule (GFC), a well-known formula composed of five medicinal herbs, is commonly prescribed to treat primary dysmenorrhea, as well as to achieve good clinical efficacy in China. However, the active components of GFC have not been identified. Here, the anti-inflammatory functions of GFC, as well as its major ingredients, were evaluated in human umbilical vein endothelial cells (HUVECs). Methods. Lipopolysaccharide (LPS) was used in HUVECs to imitate the cellular inflammation. Then, GFC-triggered mRNA expressions of cyclooxygenase-1 (COX-1) and COX-2 were determined by real-time PCR, while the expression of COX-2 protein was revealed by western blotting. Besides, nine components of GFC were evaluated for their contribution value in the anti-dysmenorrhea effects Results. The application of GFC downregulated the mRNA expressions of COX-1 and COX-2 mRNAs. Nine major components of GFC were tested in the inflammatory system, and three compounds, including paeoniflorin, benzoylpaeoniflorin, and amygdalin, exhibited robust activation in HUVECs. The combination of paeoniflorin, benzoylpaeoniflorin, and amygdalin showed over 80% of the anti-inflammatory activation. Conclusion. Our study supports that GFC plays a promising role in anti-dysmenorrhea function by decreasing COXs’ expression. Besides, paeoniflorin, benzoylpaeoniflorin, and amygdalin could be considered as major regulators for the anti-dysmenorrhea effects of GFC.


Sign in / Sign up

Export Citation Format

Share Document