scholarly journals Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 554 ◽  
Author(s):  
Harshal Nemade ◽  
Aviseka Acharya ◽  
Umesh Chaudhari ◽  
Erastus Nembo ◽  
Filomain Nguemo ◽  
...  

Application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited by the challenges in their efficient differentiation. Recently, the Wingless (Wnt) signaling pathway has emerged as the key regulator of cardiomyogenesis. In this study, we evaluated the effects of cyclooxygenase inhibitors on cardiac differentiation of hPSCs. Cardiac differentiation was performed by adherent monolayer based method using 4 hPSC lines (HES3, H9, IMR90, and ES4SKIN). The efficiency of cardiac differentiation was evaluated by flow cytometry and RT-qPCR. Generated hPSC-CMs were characterised using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient measurements. Our data show that the COX inhibitors Sulindac and Diclofenac in combination with CHIR99021 (GSK-3 inhibitor) efficiently induce cardiac differentiation of hPSCs. In addition, inhibition of COX using siRNAs targeted towards COX-1 and/or COX-2 showed that inhibition of COX-2 alone or COX-1 and COX-2 in combination induce cardiomyogenesis in hPSCs within 12 days. Using IMR90-Wnt reporter line, we showed that inhibition of COX-2 led to downregulation of Wnt signalling activity in hPSCs. In conclusion, this study demonstrates that COX inhibition efficiently induced cardiogenesis via modulation of COX and Wnt pathway and the generated cardiomyocytes express cardiac-specific structural markers as well as exhibit typical calcium transients and action potentials. These cardiomyocytes also responded to cardiotoxicants and can be relevant as an in vitro cardiotoxicity screening model.

2000 ◽  
Vol 278 (6) ◽  
pp. R1496-R1505 ◽  
Author(s):  
Yasushi Takahashi ◽  
Christine Roman ◽  
Sylvain Chemtob ◽  
Mary M. Tse ◽  
Emil Lin ◽  
...  

Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents; however, they also have adverse fetal effects such as constriction of the fetal ductus arteriosus. Recently, selective COX-2 inhibitors have been used in the management of preterm labor in the hope of avoiding fetal complications. However, both COX-1 and -2 are expressed by cells of the ductus arteriosus. We used fetal lambs (0.88 gestation) to assess the ability of selective COX-2 inhibitors celecoxib and NS398 to affect the ductus arteriosus. Both selective COX-2 inhibitors decreased PGE2 and 6ketoPGF1α production in vitro; both inhibitors constricted the isolated ductus in vitro. The nonselective COX-1/COX-2 inhibitor indomethacin produced a further reduction in PG release and an additional increase in ductus tension in vitro. We used a prodrug of celecoxib to achieve 1.4 ± 0.6 μg/ml, mean ± standard deviation, of the active drug in vivo. This concentration of celecoxib produced both an increase in pressure gradient and resistance across the ductus; celecoxib also decreased fetal plasma concentrations of PGE2 and 6ketoPGF1α. Indomethacin (0.7 ± 0.2 μg/ml) produced a significantly greater fall in ductus blood flow than celecoxib and tended to have a greater effect on ductus resistence in vivo. We conclude that caution should be used when recommending COX-2 inhibitors for use in pregnant women, because COX-2 appears to play a significant role in maintaining patency of the fetal ductus arteriosus.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1751 ◽  
Author(s):  
Dmitrii Semenok ◽  
Jury Medvedev ◽  
Lefki-P. Giassafaki ◽  
Iason Lavdas ◽  
Ioannis Vizirianakis ◽  
...  

Apart from their anti-inflammatory action, COX inhibitors have gathered the interest of many scientists due to their potential use for the treatment and prevention of cancer. It has been shown that cyclooxygenase inhibitors restrict cancer cell growth and are able to interact with known antitumor drugs, enhancing their in vitro and in vivo cytotoxicity. The permutation of hydrophilic and hydrophobic aryl groups in COX inhibitors leads to cardinal changes in the biological activity of the compounds. In the present study, thirteen heterocyclic coxib-like 4,5-diarylfuran-3(2H)-ones and their annelated derivatives—phenanthro[9,10-b]furan-3-ones—were synthesized and studied for anti-inflammatory and COX-1/2 inhibitory action and for their cytotoxic activity on the breast cancer (MCF-7) and squamous cell carcinoma (HSC-3) cell lines. The F-derivative of the –SOMe substituted furan-3(2H)-ones exhibited the best activity (COX-1 IC50 = 2.8 μM, anti-inflammatory activity (by carrageenan paw edema model) of 54% (dose 0.01 mmol/kg), and MCF-7 and HSC-3 cytotoxicity with IC50 values of 10 μM and 7.5 μM, respectively). A cytotoxic effect related to the COX-1 inhibitory action was observed and a synergistic effect with the anti-neoplastic drugs gefitinib and 5-fluorouracil was found. A phenanthrene derivative exhibited the best synergistic effect with gefitinib.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1093 ◽  
Author(s):  
Piotr Świątek ◽  
Katarzyna Gębczak ◽  
Tomasz Gębarowski ◽  
Rafal Urniaz

Cyclooxygenase inhibitors as anti-inflammatory agents can be used in chemoprevention. Many in vitro and in vivo studies on human and animal models have explained the mechanisms of the chemopreventive effect of COX inhibitors such as: induction of apoptosis, inhibition of neoplasia, angiogenesis suppression, induction of cell cycle inhibition and inhibition of the expression of peroxisome proliferator-activated receptors. Here, biological evaluation of twelve different Schiff base derivatives of N-(2-hydrazine-2-oxoethyl)-4,6-dimethyl-2-sulfanylpyridine- 3-carboxamide are presented. Their in vitro anti-COX-1/COX-2, antioxidant and anticancer activities were studied. The molecular docking study was performed in order to understand the binding interaction of compounds in the active site of cyclooxygenases. Compounds PS18 and PS33 showed a significant inhibitory activity on COX-1 at lower concentrations compared to meloxicam and piroxicam. The IC50 of COX-1 of these compounds was 57.3 µM for PS18 and 51.8 µM for PS33. Out of the tested compounds, the highest therapeutic index was demonstrated by PS18, PS19, PS33, PS40 and PS41. Lower molar concentrations of these compounds inhibit the growth of cancer cells while not inhibiting the healthy cells. Compounds PS18, PS19 and PS33 simultaneously demonstrated a statistically-significant inhibition of COX-1 or COX-2. This opens up the possibility of applying these compounds in the chemoprevention of cancer.


1999 ◽  
Vol 276 (3) ◽  
pp. R913-R921 ◽  
Author(s):  
Ronald I. Clyman ◽  
Pierre Hardy ◽  
Nahid Waleh ◽  
Yao Qi Chen ◽  
Françoise Mauray ◽  
...  

Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents but have adverse effects on the fetal ductus arteriosus. We hypothesized that COX-2 inhibitors may not affect the ductus if the predominant COX isoform is COX-1. To examine this hypothesis, we used ductus arteriosus obtained from late-gestation fetal lambs. In contrast to our hypothesis, fetal lamb ductus arteriosus expressed both COX-1- and COX-2-immunoreactive protein (by Western analysis). Although COX-1 was found in both endothelial and smooth muscle cells, COX-2 was found only in the endothelial cells lining the ductus lumen (by immunohistochemistry). The relative contribution of COX-1 and COX-2 to PGE2 synthesis was consistent with the immunohistochemical results: in the intact ductus, PGE2 formation was catalyzed by both COX-1 and COX-2 in equivalent proportions; in the endothelium-denuded ductus, COX-2 no longer played a significant role in PGE2 synthesis. NS-398, a selective inhibitor of COX-2, was 66% as effective as the selective COX-1 inhibitor valeryl salicylate and the nonselective COX inhibitor indomethacin in causing contraction of the ductus in vitro. At this time, caution should be used when recommending COX-2 inhibitors for use in pregnant women.


2016 ◽  
Vol 3 ◽  
pp. 331-334
Author(s):  
Nisa Naspiah ◽  
Yoppi Iskandar ◽  
Moelyono M W Moelyono M W ◽  
Febrina Mahmudah ◽  
Lia Puspitasari
Keyword(s):  
Cox 2 ◽  

Penelitian mengenai aktivitas antiinflamasi keladi belau (Caladium bicolor (W. Ait) Vent.) terhadap enzim siklooksigenase (COX) secara in vitro telah dilakukan. Aktivitas antiinflamasi secara in vitro terhadap enzim COX ditentukan dengan menggunakan metode TMPD (N,N,N’,N’-tetrametil-p-fenilendiamin) secara spektrofotometri. Enzim COX yang diuji meliputi enzim COX-1 dan COX-2. Berdasarkan hasil pengujian diketahui ekstrak batang keladi belau mempunyai aktivitas antiinflamasi dengan nilai IC50 sebesar 250,66 ppm terhadap COX-1 dan 255,27 ppm terhadap COX-2. Hasil pengujian menunjukkan bahwa ekstrak tersebut lebih banyak menghambat enzim COX-1.


2003 ◽  
Vol 110 (5-6) ◽  
pp. 299-303 ◽  
Author(s):  
Esko Kankuri ◽  
Erkka Solatunturi ◽  
Heikki Vapaatalo
Keyword(s):  
Cox 2 ◽  

2001 ◽  
Vol 281 (2) ◽  
pp. C524-C531 ◽  
Author(s):  
Rennolds S. Ostrom ◽  
Caroline Gregorian ◽  
Ryan M. Drenan ◽  
Kathryn Gabot ◽  
Brinda K. Rana ◽  
...  

Madin-Darby canine kidney (MDCK) cells release ATP upon mechanical or biochemical activation, initiating P2Y receptor signaling that regulates basal levels of multiple second messengers, including cAMP ( J Biol Chem 275: 11735–11739, 2000). Data shown here document inhibition of cAMP formation by Gd3+ and niflumic acid, channel inhibitors that block ATP release. cAMP production is stimulated via Ca2+-dependent activation of cytosolic phospholipase A2, release of arachidonic acid (AA), and cyclooxygenase (COX)-dependent production of prostaglandins, which activate prostanoid receptors coupled to Gs and adenylyl cyclase. In the current investigation, we assessed the expression and functional role of the two known isoforms of COX, COX-1 and COX-2. Treatment of cells with either a COX-1-selective inhibitor, SC-560, or COX-2-selective inhibitors, SC-58125 or NS-398, inhibited basal and UTP-stimulated cAMP levels. COX inhibitors also decreased forskolin-stimulated cAMP formation, implying this response is in part attributable to an action of AA metabolites. These findings imply an important role for the inducible form of COX, COX-2, under basal conditions. Indeed, COX-2 expression was readily detectable by immunoblot, and treatments that induce or reduce COX-2 expression in other cells (interleukin-1β, tumor necrosis factor-α, phorbol ester, or dexamethasone) had minimal or no effect on the levels of COX-2 immunoreactivity. RT-PCR using isoform-specific primers detected COX-2 mRNA. We conclude that COX-2 is constitutively expressed in MDCK-D1 cells and participates in basal and P2Y2-mediated signaling, implying a key role for COX-2 in regulation of epithelial cell function.


Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 1005-1016 ◽  
Author(s):  
M Zerani ◽  
C Dall’Aglio ◽  
M Maranesi ◽  
A Gobbetti ◽  
G Brecchia ◽  
...  

The objective of the present study was to investigate in rabbit corpora lutea (CL), at both the cellular and molecular level, intraluteal cyclooxygenase (COX)-1, COX-2 and prostaglandin (PG) E2-9-ketoreductase (PGE2-9-K) enzymatic activities as well asin vitroPGE2 and PGF2α synthesis following PGF2α treatment at either early- (day-4) or mid-luteal (day-9) stage of pseudopregnancy. By immunohistochemistry, positive staining for COX-2 was localized in luteal and endothelial cells of stromal arteries at both the stages. In CL of both stages, basal COX-2 mRNA levels were poorly expressed, but rose (P< 0.01) 4- to 10-fold 1.5–6 h after treatment and then gradually decreased within 24 h. Compared to mid-stage, day-4 CL had lower (P< 0.01) COX-2 and PGE2-9-K basal activities, and PGF2α synthesis rate, but higher (P< 0.01) PGE2 production. Independent of luteal stage, PGF2α treatment did not affect COX-1 activity. In day-4 CL, PGF2α induced an increase (P< 0.01) in both COX-2 activity and PGF2α synthesis, whereas that of PGE2 remained unchanged. In day-9 CL, PGF2α up-regulated (P< 0.01) both COX-2 and PGE-9-K activities, and PGF2α production, but decreased (P< 0.01) PGE2 synthesis. All changes in gene expression and enzymatic activities occurred within 1.5 h after PGF2α challenge and were more marked in day-9 CL. Our data suggest that PGF2α directs intraluteal PG biosynthesis in mature CL, by affecting the CL biosynthetic machinery to increase the PGF2α synthesis in an auto-amplifying manner, with the activation of COX-2 and PGE-9-K; this may partly explain their differentially, age-dependent, luteolytic capacity to exogenous PGF2α in rabbits.


2007 ◽  
Vol 23 (4) ◽  
pp. E8 ◽  
Author(s):  
Christina Pfister ◽  
Rainer Ritz ◽  
Heike Pfrommer ◽  
Antje Bornemann ◽  
Marcos S. Tatagiba ◽  
...  

Object The current treatment for recurrent or malignant meningiomas with adjuvant therapies has not been satisfactory, and there is an intense interest in evaluating new molecular markers to act as therapeutic targets. Enzymes of the arachidonic acid (AA) cascade such as cyclooxygenase (COX)–2 or 5-lipoxygenase (5-LO) are upregulated in a number of epithelial tumors, but to date there are hardly any data about the expression of these markers in meningiomas. To find possible targets for chemotherapeutic intervention, the authors evaluated the expression of AA derivatives at different molecular levels in meningiomas. Methods One hundred and twenty-four meningioma surgical specimens and normal human cortical tissue samples were immunohistochemically and cytochemically stained for COX-2, COX-1, 5-LO, and prostaglandin E receptor 4 (PTGER4). In addition, Western blot and polymerase chain reaction (PCR) analyses were performed to detect the presence of eicosanoids in vivo and in vitro. Results Sixty (63%) of 95 benign meningiomas, 21 (88%) of 24 atypical meningiomas, all five malignant meningiomas, and all normal human cortex samples displayed high COX-2 immunoreactivity. All cultured specimens and IOMM-Lee cells stained positive for COX-2, COX-1, 5-LO, and PTGER4. The PCR analysis demonstrated no changes in eicosanoid expression among meningiomas of different World Health Organization grades and in normal human cortical and dura mater tissue. Conclusions Eicosanoid derivatives COX-1, COX-2, 5-LO, and PTGER4 enzymes show a high universal expression in meningiomas but are not upregulated in normal human cortex and dura tissue. This finding of the ubiquitous presence of these enzymes in meningiomas offers an excellent baseline for testing upcoming chemotherapeutic treatments.


Sign in / Sign up

Export Citation Format

Share Document