Analyzing the Impact of CSR Activities Using a Neural Network Model

2020 ◽  
Vol 49 (1) ◽  
pp. 51-74
Author(s):  
Juyoung Kim ◽  
Seunggyeong Yu
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Yu ◽  
Yirui Wang ◽  
Shangce Gao ◽  
Zheng Tang

With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.


2009 ◽  
Vol 43 (3/4) ◽  
pp. 421-437 ◽  
Author(s):  
Manuela Silva ◽  
Luiz Moutinho ◽  
Arnaldo Coelho ◽  
Alzira Marques

PurposeThis paper aims to investigate the impact of market orientation (MO) on performance using a neural network model in order to find new linkages and new explanations for this relationship.Design/methodology/approachThis investigation is based on a survey data collection from a sample of 192 Portuguese companies. A neural network model has been developed to identify the effects of each dimension of MO on each dimension of performance.FindingsRelationship among MO and performance was corroborated but MO's impact is poor and based on its first dimension, market intelligence generation.Research limitations/implicationsFurther research in this field should be conducted using other tools offered by neural network modelling.Practical implicationsManagers should give more attention to cross‐functional co‐ordination in order to improve market intelligence dissemination and responsiveness and, thus, global performance.Originality/valueThe paper presents the development of a neural network model to analyse this relationship.


Author(s):  
Khaled A. Al-Utaibi ◽  
M. Idrees ◽  
Ayesha Sohail ◽  
Fatima Arif ◽  
Alessandro Nutini ◽  
...  

Our endocrine system is not only complex, but is also enormously sensitive to the imbalances caused by the environmental stressors, extreme weather situation, and other geographical factors. The endocrine disruptions are associated with the bone diseases. Osteoporosis is a bone disorder that occurs when bone mineral density and bone mass decrease. It affects women and men of all races and ethnic groups, causing bone weakness and the risk of fractures. Environmental stresses are referred to physical, chemical, and biological factors that can impact species productivity. This research aims to examine the impact of environmental stresses on bone diseases like osteoporosis and low bone mass (LBM) in the United States (US). For this purpose, we use an artificial neural network model to evaluate the correlation between the data. A multilayer neural network model is constructed using the Levenberg–Marquardt training algorithm, and its performance is evaluated by mean absolute error and coefficient of correlation. The data of osteoporosis and LBM cases in the US are divided into three groups, including gender group, age group, and race/ethnicity group. Each group shows a positive correlation with environmental stresses and thus the endocrinology.


2018 ◽  
Vol 29 (7) ◽  
pp. 1073-1097 ◽  
Author(s):  
Gurinderpal Singh ◽  
VK Jain ◽  
Amanpreet Singh

The photovoltaic thermal greenhouse system highly supports the production of biogas. The system’s prime advantage is biogas heating and crop drying through varied directions of air flow. Further, it diminishes the upward loss of the system. This paper aims to model a practical greenhouse system for obtaining the precise estimation of the heating efficiency, given by the solar radiance. The simulation model adopts the self-adaptive firefly neural network model that applies on known experimental data. Therefore, the error function between the model outcome and the experimental outcome is substantially minimized. The performance analysis involves an effective comparative study on the root mean square error between the adopted self-adaptive firefly neural network model and the conventional models such as Levenberg–Marquardt neural network and firefly neural network. Later, the impact of self-adaptiveness, FF update and learning performance on attaining the knowledge regarding the characteristics of SAFF algorithm is analysed to yield better performance.


2021 ◽  
Vol 11 (22) ◽  
pp. 10563
Author(s):  
Ivan Vajs ◽  
Dejan Drajic ◽  
Zoran Cica

In this paper, we explore the impact of the COVID-19 lockdown in Serbia on the air pollution levels of CO, NO2 and PM10 alongside the possibility for low-cost sensor usage during this period. In the study, a device with low-cost sensors collocated with a reference public monitoring station in the city of Belgrade is used for the same period of 52 days in 2019 (pre-COVID-19 period), 2020 (COVID-19 lockdown) and 2021 (post-COVID-19 period). Low-cost sensors’ measurements are improved by using a convolutional neural network that applies corrections of the influence of temperature and relative humidity on the low-cost sensors. As a result of this study we have noticed a remarkable decrease in NO2 (primarily related to traffic density), while on the other hand CO and PM10, related to domestic heating sources and heating plants, showed constant or slightly higher levels. The obtained results are in accordance with other published work in this area. The low-cost sensors have shown a satisfactory correlation with the reference CO measurements during the lockdown, while the NO2 and PM10 measurements of 2020 were corrected using a convolutional neural network trained on meteorological and pollutant data from 2019. The results include an improvement of 0.35 for the R2 of NO2 and an improvement of 0.13 for the R2 of PM10, proving that our neural network model trained on data from 2019 can improve the performance of the sensor in the lockdown period in 2020. This means that our neural network model is very robust, as it exhibits good performance even in the case where training data from the prior year (2019) are used in the following year (2020) in very different environment circumstances—a lockdown.


2018 ◽  
Vol 10 (11) ◽  
pp. 4152 ◽  
Author(s):  
Feng Dong ◽  
Yifei Hua

While enriching people’s lives, the rapid development of online shopping has posed a severe challenge to the environment. Questionnaires focusing on the intention to recycle packaging waste are designed. These questionnaires contain first-level variables such as recycling behavior attitude, recycling behavior cognition, situational factors, historical recycling behavior, and recycling behavior intention. With the collected questionnaire data, a regression analysis is first conducted on the selection of variables and the effect of variable prediction. After ensuring the validity of the variables, 15 second-level variables are extracted into eight principal components using principal component analysis. These components serve as input to a Bayesian regularized neural network. Subsequently, a three-layer (8-15-1) neural network model is constructed; the trained neural network model achieves a high degree of fit between the predicted and measured values of the test set, thus further proving the rationality of the selected variables and the neural network model. Finally, this study uses the connection weights matrix of the neural network model and the Garson formula to analyze in depth the specific impact of each second-level variable on the intention to recycle packaging waste. Note that given the particularity of packaging waste recycling behavior, the impact on social norms, recycling behavior knowledge, values, and publicity on behavioral intentions in second-level variables is different from that obtained in similar previous studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kun Song ◽  
ShengKai Lv ◽  
Die Hu ◽  
Peng He

In software engineering, defect prediction is significantly important and challenging. The main task is to predict the defect proneness of the modules. It helps developers find bugs effectively and prioritize their testing efforts. At present, a lot of valuable researches have been done on this topic. However, few studies take into account the impact of time factors on the prediction results. Therefore, in this paper, we propose an improved Elman neural network model to enhance the adaptability of the defect prediction model to the time-varying characteristics. Specifically, we optimized the initial weights and thresholds of the Elman neural network by incorporating adaptive step size in the Cuckoo Search (CS) algorithm. We evaluated the proposed model on 7 projects collected from public PROMISE repositories. The results suggest that the contribution of the improved CS algorithm to Elman neural network model is prominent, and the prediction performance of our method is better than that of 5 baselines in terms of F-measure and Cliff’s Delta values. The F-measure values are generally increased with a maximum growth rate of 49.5% for the POI project.


Sign in / Sign up

Export Citation Format

Share Document