scholarly journals Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites

Author(s):  
Anna S. Seroglazova ◽  
Maria I. Chebanenko ◽  
Vadim I. Popkov

Porous nanocomposites based on PrFeO3-TiO2 were synthesized using the glycine-nitrate combustion method with different values of mass content of TiO2 (0–7.5 %) and subsequent heat treatment in air. The results of X-ray phase analysis and Raman spectroscopy confirmed the presence of ultradispersed TiO2, structurally close to that of anatase. The morphology, specific surface area, and porous structure of the obtained powders were characterized by scanning electron microscopy and adsorption-structural analysis, the results of which showed that the samples had a foam-like mesoporous structure.The specific surface area and the average pore size were in the ranges of 7.6–17.8 m2/g and 7.2–15.2 nm, respectively, and varied depending on the TiO2 content. The optical properties of the nanocomposites were studied by UV-visible diffuse reflection spectroscopy, the energy of the band gap was calculated as 2.11–2.26 eV. The photocatalytic activity of PrFeO3‑TiO2 nanocomposites was investigated in the process of photo-Fenton-like degradation of methyl violet under the action of visible light. It was shown that the maximum reaction rate constant was 0.095 min-1, which is ten times higher than the value for the known orthoferrite-based analogs. The obtained photocatalysts were also characterized by their high cyclic stability. Based on the studies carried out, the obtained porous PrFeO3-TiO2 nanocomposites can be considered to be apromising basis for photocatalysts applied in advanced oxidative processes of aqueous media purification from organic pollutants.

Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 344
Author(s):  
Chengwu Dong ◽  
Changlong Yin ◽  
Tongtong Wu ◽  
Zhuyan Wu ◽  
Dong Liu ◽  
...  

Unsupported NiMo catalyst has high hydrogenation activity due to its high active site distribution. However, low specific surface area and pore distribution greatly limit the efficient utilization of the active components. The Y-zeolite nanoclusters were hydrothermally synthesized and introduced into the unsupported NiMo catalysts from a layered nickel molybdate complex oxide. The XRD, N2 adsorption-desorption, FT-IR, Py-IR, SEM, NH3-TPD, and TEM were used to characterize all catalysts. The dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction was performed in a continuous high pressure microreactor. The results showed that the specific surface area, pore volume, and average pore size of the unsupported NiMo catalysts were greatly increased by the Y-zeolite nanoclusters, and a more dispersed structure was produced. Furthermore, the Lewis acid and total acid content of the unsupported NiMo catalysts were greatly improved by the Y-zeolite nanoclusters. The HDS results showed that the unsupported NiMo catalysts modified by the nanoclusters had the same high desulfurization efficiency as the unmodified catalyst, but had more proportion of direct desulfurization (DDS) products. The results offer an alternative to reducing hydrogen consumption and save cost in the production of ultra clean diesel.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2839 ◽  
Author(s):  
Renata F. Botti ◽  
Murilo D.M. Innocentini ◽  
Thais A. Faleiros ◽  
Murilo F. Mello ◽  
Danilo L. Flumignan ◽  
...  

This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 °C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64–62.54 m²/g; 9 nm) than the sodium formulation (6.34–32.62 m²/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70–75 °C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 °C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions.


2019 ◽  
Vol 19 (6) ◽  
pp. 3205-3209 ◽  
Author(s):  
Shangqing Lu ◽  
Qirui Lin ◽  
Sufang Wu

This study focuses on the synergy effect of pore size and specific surface area (SSA) on the carbon dioxide sorption performance. Nano CaO-based CO2 sorbents with various pore size (15–55 nm) under similar SSA, and different SSA (14.50–48.90 m2/g) under similar pore size are prepared using selected organic templates. Results indicate that increasing the proportion of macropore in 47–96 nm could significantly improve sorbent’s sorption rate and corresponding sorption capacity. Besides, sorption capacity could be also by SSA. Moreover, partial correlation analysis reveals that sorption capacity is slightly more dependent on average pore size than SSA.


MRS Advances ◽  
2017 ◽  
Vol 2 (57) ◽  
pp. 3505-3510
Author(s):  
Jiankai Zhang ◽  
Xiaohong Chen ◽  
Ran Liu ◽  
Huaihe Song ◽  
Zhihong Li

ABSTRACTMagnesium oxide aerogels were made by sol-gel process using magnesium methoxide as precursor, methanol and deionized water as solvent with ethanol supercritical fluid drying. The influences of the different factors on the gel time and the specific surface area of magnesium oxide aerogels were studied, and the structure and morphology were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD), and the Small Angle X-ray Scatter (SAXS) was utilized to determine the fractural structure of the magnesium oxide aerogels. The results show that MgO aerogels belong to the typical mesoporous materials with rich network and highly developed pore structure, and the specific surface area is 904.9 m2/g, the apparent density is 0.055 g/cm3, the average pore size is 19.6 nm. The results of SAXS analysis show that the fractal dimension of the MgO aerogels is 2.32 in high q area which proves the existence of rough surface and pore fractal structure.


Author(s):  
M. Troubitsin ◽  
Viet Hung Hoang ◽  
L. Furda

The object of our investigation is a biomimetic calcium-phosphate nanocomposite doped by silicate and carbonate anions (BMHAP) synthesized by chemical deposition from aqueous solutions. The obtained samples are investigated using X-ray phase analysis (XRD), FTIR spectroscopy, and low-temperature nitrogen adsorption (BET method). The influence of the techno chemical synthesis parameters on the products characteristics (including phase composition, crystal lattice parameters, average crystallite size, specific surface area) is evaluated. The study on the effect of the synthesis temperature shows that with increasing in temperature from 22°C to 80°C, reveals a slight increase in the parameters of unit cells a and c, which leads to an increase in its volume. There is also a tendency towards a decrease in the average size of coherent scattering regions of crystallites (from 7,52 to 4,65 nm) and specific surface area (from 192,51 to 74,72 m2/g), but the pore volume and average pore diameter of the synthesized powders increases. The effect of the aging time of the sediment in the mother liquor is studied from 0,5 to 24 hours. It is found that with an increase in the maturation time of the sediment, the percent crystallinity of the powders improves by 1,7 times, an increase in the specific surface area from 163,43 to 192,51 m2/g and a slight decrease in the pore volume and average pore size of the samples are observed. The impact of the stirring rate of the reagents is investigated. An increase in speed from 300 to 1300 rpm has been shown to decrease the average crystallite size from 8,80 to 6,41 nm, and as a result, to increase the specific surface area of the synthesized samples from 178,58 to 192,51 m2/g, respectively.


In order to create alternative vanadium oxide-supported catalysts for the process of non-oxidative propane dehydrogenation to propylene, we studied the effect of the increased content of vanadium oxide in the V2O5–ZrO2–SiO2 composition on its structure and catalytic properties. Zirconium silicate hydrogel in the form of finished spherical granules with the SiO2 content of more than 50% was prepared by direct sol-gel synthesis from zirconium oxychloride and sodium metasilicate using the droplet coagulation technology. Catalysts were fabricated by impregnation of hydrogel with an aqueous solution of vanadyl sulfate salt, hydrothermal treatment and calcination in air. By using scanning electron microscopy, X-ray diffraction analysis and low-temperature nitrogen adsorption/desorption method, we showed that amorphous samples with a developed mesoporous structure (with the pore diameter of ~6 nm and the specific surface area of ~300 m2 g–1) were formed when the content of the supporting V2O5 on zirconium silicate was 10, 20, 25, and 30 wt.%. In the course of temperature increase in the propane dehydrogenation reaction, the catalyst samples crystallized in the reaction mixture propane–inert gas with the formation of tetragonal zirconia. When the content of V2O5 was 25% or 30%, additional phases of reduced vanadium oxides and traces of the zirconium vanadate phase were formed. After the reaction, the specific surface area of the catalysts decreased significantly and the average pore size of the samples with 25% and 30% V2O5 increased to ~30 nm. The propylene yield reproducibly observed on the samples with 25% and 30% V2O5 was lower than that on the samples with 10% V2O5; however, it remained quite high, which was probably due to the expanded diameter of the pores and the appearance of additional ZrV2O7 sites that are active with respect to the dehydrogenation of light alkane.


2011 ◽  
Vol 382 ◽  
pp. 427-430
Author(s):  
E. Dong ◽  
Long Guan

Since coal gangue can destroy the environment, we aim at improving coal gangue to absorbing material by changing it in different temperature and chemical liquor. Base on the microstructure and the adsorption experiment, we detect microstructure and absorption property of improved coal gangue. The microstructure experiment shows that the average pore size and specific surface area of improved coal gangue appear distinguish obviously as the increasing of chemical liquor pH value and temperature. Absorption experiment shows that the absorption capacity of improved coal gangue decrease as the chemical liquor pH value increase, increase as the temperature increase. The adsorption capacity of improved coal gangue increases with an increase of average pore size and specific surface area.


2020 ◽  
Vol 850 ◽  
pp. 273-278
Author(s):  
Ilmārs Zālīte ◽  
Līga Grase ◽  
Santa Lagzdina ◽  
Dzintra Rašmane

For sintering Al2O3 porous ceramic were used plasma-chemical synthesed powders with a specific surface area of 30 and 50 m2/g. Sintering were carried out in various conditions: sintering in nitrogen atmosphere, in air or vacuum at 1200-1700 °C. The most suitable sintering conditions are sintering in air at 1200-1500 °C using Al2O3 nanopowder with a specific surface area of 50 m2/g. Samples with open porosity of 35-45% and average pore size of 100-200 nm were obtained under these conditions.


Cerâmica ◽  
1998 ◽  
Vol 44 (289) ◽  
pp. 160-165 ◽  
Author(s):  
Carlos Renato Perruso ◽  
Arnaldo Alcover Neto ◽  
Reiner Neumann ◽  
Regina Sandra Veiga Nascimento ◽  
Marcus Vinicius de Araujo Fonseca

Recently, we have reported the production of a microporous high purity silica powder from the acid leaching of glasses with average pore size around 2.5nm and specific surface area of 420m2/g (BET). The employed glasses derived from the melting of two types of waste from the industrial processing of Brazilian oil shale (retorted oil shale and the top fraction of the intermediate layer of Irati Formation). Depending on the proportion of the two wastes employed in the formulation of the glasses, either a silica gel or a powdered one is obtained, after leaching. The acid leaching of those glasses with hydrochloric acid, at 90 °C, was used to produce powdered microporous silica. In the present work it is studied the effect of aging time and temperature on the morphology and structure of the obtained powdered silica. Aging studies were performed in two different media, an acidic (hydrochloric acid) and a basic one (ammonium hydroxide) for different periods of time and temperatures. XRD, SEM/EDX, TEM, specific surface area measurements and DTA/TGA were used to characterize these materials. The results have shown a decrease of specific surface area with increasing time and temperature. Apparently, this behavior may be associated with dissolution and re-precipitation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document