scholarly journals Investigation of Bond Strength Between GFRP Wrapped Steel Reinforcement and Concrete with Pullout Test

2020 ◽  
Vol 7 (4) ◽  
pp. 321-327
Author(s):  
Bogachan Basaran ◽  
◽  
Erkan Turkmen Donmez ◽  
Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


2018 ◽  
Vol 3 (4) ◽  
pp. 44 ◽  
Author(s):  
Alvaro Ruiz Emparanza ◽  
Francisco De Caso Y Basalo ◽  
Raphael Kampmann ◽  
Itziar Adarraga Usabiaga

Increased traffic in combination with growing environmental impacts have led to the accelerated degradation of built infrastructure. In reinforced concrete structures, the corrosion of steel reinforcement is the predominant cause of deterioration. Thus, over the last years the use of glass fiber reinforced polymer (GFRP) composites as internal reinforcement bars (rebars) for concrete structures has been evaluated, and has been proved to be a viable alternative to traditional steel reinforcement mainly due to its tensile strength and non-corrosive nature. However, thus far, the GFRP rebar market is diverse and manufacturers around the world produce GFRP rebar types with different surface enhancements to improve the bond to concrete characteristics. In this study, the bond performance of three dissimilar GFRP rebar types (sand coated, helically grooved and with surface lugs) was evaluated over time in seawater environments, with a focus on the bond strength. Accordingly, specimens were exposed to seawater in circulating chambers at three different temperatures (23 °C, 40 °C and 60 °C) for multiple time periods (60 and 120 days). To evaluate the bond performance, pullout tests were conducted according to ASTM D7913. The results showed that the bond strength varied with the surface enhancement features. However, the bond strength did not vary significantly with exposure time and temperature for all three evaluated rebar types.


Author(s):  
Mark Haynes ◽  
Chih-Hang John Wu ◽  
B. Terry Beck ◽  
Naga Narendra B. Bodapati ◽  
Robert J. Peterman

The purpose of this research project is to develop a mathematical model that predicts the bond strength of a prestressing steel reinforcement wire given the known geometrical features of the wire. The geometrical features of the reinforcement wire were measured by a precision non-contact profilometer. With this mathematical model, prestressing reinforcement wires can now be analyzed for their bond strength without destructive testing. This mathematical model has the potential to serve as a quality control assessment in reinforcement wire production. In addition this mathematical model will provide insight into which reinforcement wires provide the greatest bond strength and which combinations of geometrical features of the reinforcement wire are responsible for providing the bond strength. A precision non-contact profilometer has been developed to measure the important geometrical features of the reinforcement wire. The profilometer is capable of sub-micron resolution measurements to provide an extremely high quality three-dimensional rendering of the reinforcement wire surface profile. From this detailed profile data it is then possible to extract all of the relevant geometrical features of the reinforcement wire. A mathematical model has been created by testing a variety of different reinforcement wires available in the market. By correlating the transfer length of concrete prisms made with the reinforcement wires to various geometrical features, several different levels of mathematical correlation complexity have been investigated. The current empirical correlation models under development are first order and combine three to four unique geometrical features of the reinforcement wire which then act as predictors of the concrete prism transfer length. The resulting mathematical model relating the wire geometrical features to transfer length is referred to as the Bond Index Number (BIN). The BIN is shown to provide a numerical measure of the bond strength of prestressing steel reinforcement wire, without the need for performing destructive tests with the reinforcement wire.


Sign in / Sign up

Export Citation Format

Share Document