scholarly journals Evaluation of the Bond-to-Concrete Properties of GFRP Rebars in Marine Environments

2018 ◽  
Vol 3 (4) ◽  
pp. 44 ◽  
Author(s):  
Alvaro Ruiz Emparanza ◽  
Francisco De Caso Y Basalo ◽  
Raphael Kampmann ◽  
Itziar Adarraga Usabiaga

Increased traffic in combination with growing environmental impacts have led to the accelerated degradation of built infrastructure. In reinforced concrete structures, the corrosion of steel reinforcement is the predominant cause of deterioration. Thus, over the last years the use of glass fiber reinforced polymer (GFRP) composites as internal reinforcement bars (rebars) for concrete structures has been evaluated, and has been proved to be a viable alternative to traditional steel reinforcement mainly due to its tensile strength and non-corrosive nature. However, thus far, the GFRP rebar market is diverse and manufacturers around the world produce GFRP rebar types with different surface enhancements to improve the bond to concrete characteristics. In this study, the bond performance of three dissimilar GFRP rebar types (sand coated, helically grooved and with surface lugs) was evaluated over time in seawater environments, with a focus on the bond strength. Accordingly, specimens were exposed to seawater in circulating chambers at three different temperatures (23 °C, 40 °C and 60 °C) for multiple time periods (60 and 120 days). To evaluate the bond performance, pullout tests were conducted according to ASTM D7913. The results showed that the bond strength varied with the surface enhancement features. However, the bond strength did not vary significantly with exposure time and temperature for all three evaluated rebar types.

Author(s):  
Alvaro Ruiz Emparanza ◽  
Francisco De Caso Y Basalo ◽  
Raphael Kampmann ◽  
Itziar Adarraga Usabiaga

Increased traffic in combination with growing environmental impacts, have led to accelerated degradation of the built infrastructure. In reinforced concrete structures, the corrosion of steel reinforcement is the predominant cause of deterioration. Thus, over the last years the use of glass fiber reinforced polymer (GFRP) composites as internal reinforcement bars (rebars) for concrete structures was evaluated, and has been proved to be a viable alternative to traditional steel reinforcement mainly due to its tensile strength and non-corrosive nature. However, thus far, the GFRP rebar market is diverse and manufacturers around the world produce GFRP rebar types with different surface enhancement to improve the bond to concrete characteristics. In this study, the bond performance of three dissimilar GFRP rebar types (sand coated, helically grooved and with surface lugs) was evaluated over time in seawater environments, with a focus on the bond strength. Accordingly, specimens were expose to seawater in circulating chambers, at three different temperatures (23 °C, 40 °C and 60 °C) for multiple time periods (60 and 120 days). To evaluate the bond performance, pullout tests were conducted according to ASTM D7913 [1]. The results showed that the bond strength varies with surface enhancement features. However, the bond strength didn’t vary significantly with exposure time and temperature for all three evaluated rebar types.


2020 ◽  
Vol 9 (1) ◽  
pp. 637-649 ◽  
Author(s):  
Zhan Guo ◽  
Qingxia Zhu ◽  
Wenda Wu ◽  
Yu Chen

AbstractThe article describes an experimental study on the bond–slip performance between the pultruded glass fiber-reinforced polymer (GFRP) tube and the nano-CaCO3 concrete. Taking the nano-CaCO3 concrete strength and GFRP tube thickness as primary parameters, nine specimens were designed and tested to study the influence of these parameters on the bond strength of the specimens. Besides, three specimens filled with the ordinary concrete were also tested by using the push-out tests to make comparisons with the bond performance of the specimens filled with nano-CaCO3 concrete. A total of four push-out tests were conducted on each specimen. The experimental results indicate that there are two types of axial load–slip curves for each specimen in four push-out tests. Moreover, comparison of the results of the push-out tests in the same direction shows that the bond failure load of the specimen decreases with the increase in the number of push-out tests. Based on the analysis of the test results, it is shown that the bond performance between the GFRP tube and the nano-CaCO3 concrete is better than that between the GFRP tube and the ordinary concrete. Furthermore, as the nano-CaCO3 concrete strength increases, the bond strength of the specimens decreases, indicating that the concrete strength has a negative effect on the bond strength. When the nano-CaCO3 concrete strength is relatively smaller (C20), the bond strength of the specimens decreases with the increase in the thickness of the GFRP tube. However, when the nano-CaCO3 concrete strength is relatively larger (C30 and C40), the bond strength of the specimens increases as the thickness of the GFRP tube increases.


2020 ◽  
Vol 24 (1) ◽  
pp. 11-16
Author(s):  
Saddam - Husein ◽  
Rudy Djamaluddin ◽  
Rita Irmawaty ◽  
Kusnadi Kusnadi

SADDAM HUSEIN. Analisa Pola Kegagalan Balok Beton Menggunakan GFRP Bar Tanpa Selimut Beton (dibimbing oleh Rudi Djamaluddin dan Rita Irmawaty) Struktur beton bertulang yang menggunakan tulangan baja pada daerah korosif, menjadi rawan terhadap kerusakan atau penurunan kekuatannya akibat korosi.Korosi pada tulangan baja merupakan salah satu faktor penyebab menurunnya kekuatan struktur beton bertulang. Salah satu material yang dikembangkan mengatasi korosi adalah penggunaan material tulangan GFRP (Glass Fiber Reinforced Polymer). Penelitian ini bertujuan untuk menganalisa kapasitas lentur dan pola kegagalan balok beton tanpa selimut dengan menggunakan material tulangan GFRP bar.   Desain penelitian merupakan eksperimental laboratorium dengan rekapitulasi sebanyak 6 sampel yang terdiri dari 2 Balok beton menggunakan tulangan baja dengan selimut beton, 2 balok beton menggunakan tulangan GFRP bar dengan selimut beton, 2 balok beton menggunakan GFRP bar tanpa selimut beton. Metode pengujian dilakukan dengan dengan pengujian lentur statik monotonik dan Analisis data menggunakan uji kondisi retak awal dan kondisi ultimit.   Hasil penelitian ini menunjukkan bahwa kapasitas lentur pada balok dengan tulangan GFRP bar lebih besar dibandingkan dengan balok tulangan baja dan mampu meningkatkan kapasitas lentur balok dalam menahan beban sebesar 39.76 %, pola kegagalan beton yang terjadi pada balok tulangan baja mengalami kegagalan lentur tekan ditandai dengan retakan yang terjadi pada sisi tertekan dan membentuk retakan tegak dengan sumbu netral beton yang tertekan, sedangkan pada balok beton tulangan GFRP tanpa selimut mengalami kegagalan keruntuhan tekan geser dengan kondisi tulangan berdeformasi (bi-linear) dengan retak miring dan secara tiba-tiba menjalar menuju sumbu netral beton yang tertekan sehingga terjadilah keruntuhan secara tiba-tiba.     SADDAM HUSEIN.Failure mode analysis of concrete Beams Using GFRP rebar Without concrete cover (supervised by Rudi Djamaluddin and Rita Irmawaty)   Reinforced concrete that uses rebar steel in corrosive areas, are prone to damage or decreased strength due to corrosion. Corrosion in the steel reinforcement is one of the factors that decreasing strength of reinforced concrete. One of the materials developed to overcome corrosion is the use of GFRP (Glass Fiber Reinforced Polymer) reinforcement material. This study aims to analyze the flexural capacity and failure mode of concrete beams without concrete cover using material GFRP bar as reinforcement.   The research design was an experimental laboratory with a recapitulation of 6 samples consisting of 2 beams using steel reinforcement with concrete cover.2 concrete beams using reinforcement GFRP bar with concrete cover, 2 beams using GFRP bars without concrete cover. The  research method uses the monotonic static flexure and analyzing the data using the initial crack condition and ultimate conditions test.   The results of the research indicate the flexural capacity of the beams with GFRP bar reinforcement is higher than steel reinforcement beams and can increase 39.76% of the flexural capacity of the beams in holding loads , the failure mode analysis occurs in steel reinforcing beam experiences compressive failure. Failure was characterized  by cracks that occur on the depressing side and form an upright crack with the neutral axis of the compressed concrete, whereas in GFRP reinforced concrete beams without concrete cover, failure of shear compression with conditions of deformed reinforcement (bi-linear) with sloping cracks and suddenly spread towards the neutral axis of the compressed concrete so that there was a sudden collapse.


2016 ◽  
Vol 36 (6) ◽  
pp. 464-475 ◽  
Author(s):  
Minkwan Ju ◽  
Gitae Park ◽  
Sangyun Lee ◽  
Cheolwoo Park

In this study, we experimentally investigated the bond performance of a glass fiber-reinforced polymer hybrid bar with a core section comprising a deformed steel bar and a sand coating. The glass fiber-reinforced polymer and deformed steel hybrid bar (glass fiber-reinforced polymer hybrid bar) can contribute to longer durability and better serviceability of reinforced concrete members because of the increased modulus of elasticity provided by the deformed steel bar. Uniaxial tensile tests in compliance with ASTM D 3916 showed that the modulus of elasticity of the glass fiber-reinforced polymer hybrid bar was enhanced up to three times. For the bond test, a total of 30 specimens with various sand-coating and surface design parameters such as the size of the sand particles (0.6 mm and 0.3 mm), sand-coating type (partially or completely), number of strands of fiber ribs (6 and 10), and pitch space (11.4 mm to 29.1 mm) of the fiber ribs were tested. The completely sand-coated glass fiber-reinforced polymer hybrid bar exhibited a higher bond strength (90.5%) than the deformed steel bar and a reasonable mode of failure in concrete splitting. A modification parameter to the Eligehausen, Popov, and Bertero (BPE) model is suggested based on the representative experimental tests. The bond stress–slip behavior suggested by the modified BPE model in this study was in reasonable agreement with the experimental results.


2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


2016 ◽  
Vol 851 ◽  
pp. 751-756
Author(s):  
Ana Almerich-Chulia ◽  
E. Fenollosa ◽  
Pedro Martin

Reinforced concrete has been the material mainly used in the repair of traditional structures of historic buildings. However, since the end of the 20th century, it began to question its use, especially for damages arising from corrosion of steel. An alternative is lime concrete reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Current lime concrete provides a high compressive strength and prevent problems such as cement alkalinity. GFRP bars provide the necessary tensile strength. Its modulus of elasticity and adhesion, improved by various mechanisms, allows good compatibility with concrete lime. Mechanical characteristics of the mixture are studied together to withstand the tensions and compressions in historic buildings. This new material is progressively replacing to Portland cement in the restoration of architectural heritage


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1268
Author(s):  
Jun Zhao ◽  
Xin Luo ◽  
Zike Wang ◽  
Shuaikai Feng ◽  
Xinglong Gong ◽  
...  

FRP bars and steel strands are widely used in civil engineering. In this study, three different types of high-strength reinforcement materials, carbon fiber reinforced polymer (CFRP) bar, glass fiber reinforced polymer (GFRP) bar, and steel strand, were investigated for their interfacial bond performance with concrete. A total of 90 sets of specimens were conducted to analyze the effects of various parameters such as the diameter of reinforcement, bond length, the grade of concrete and stirrup on the bond strength and residual bond strength. The results show that CFRP bars possess a higher bond strength retention rate than steel bars in the residual section. In addition, with the increase in bond length and diameter of the CFRP bar, the residual bond strength decreases, and the bond strength retention rate decreases. Furthermore, the bond strength retention rate of GFRP bars was found to be higher than that of CFRP bars. With the increase in grade of concrete, the bond strength and residual bond strength between GFRP bars and concrete increases, but the bond strength retention rate decreases. With an increase in bond length and diameter of the GFRP bar, the bond strength starts to decrease. Further, stirrup can also increase the bond strength and reduce the slip at the free end of GFRP bars. Moreover, the bond strength retention rate of the steel strand was found to be lower than CFRP and GFRP bar.


2020 ◽  
Vol 976 ◽  
pp. 165-172
Author(s):  
Meng Jing ◽  
Werasak Raongjant

The mechanical properties of masonry structural members strengthened by FRP (Fiber Reinforced Polymer) are affected by the bond strength of the reinforcement interface, in addition to the strength of the material FRP itself. This project is aimed at the new technology of Sprayed Fiber Reinforced Polymer Composites (SFRP), which is currently attracting attention. The bond strength between SFRP layer and masonry surface under high-humidity condition during strengthening construction and dry-wet cycle conditions after reinforcement were studied by experimental method. Different masonry substrates and different reinforcement methods were set as the test parameters. It is concluded that, compared with the currently used GFRP (Glass Fiber Reinforced Polymer) sheets reinforcement method, the SFRP reinforcement method has an significant improvement in the bond strength and the durability.


Sign in / Sign up

Export Citation Format

Share Document