scholarly journals Combined Impact of High Injection Pressure and Injection Timing on the Performance and Combustion of Common Rail Direct Injection (CRDI) Engine Fueled with a Simarouba Biodiesel Blend

Author(s):  
Srinath Pai ◽  
Abdul Sharief ◽  
Shiva Kumar
Author(s):  
Michael Engelmayer ◽  
Gert Taucher ◽  
Andreas Wimmer ◽  
Gernot Hirschl ◽  
Thomas Kammerdiener

Measures exist to adjust tailpipe NOx emissions to assigned values, for example cooled exhaust gas recirculation (EGR) or a SCR catalyst in conjunction with urea. The situation is quite different with soot when use of a trap is not feasible for reasons of cost, space requirements and maintenance. Due to the highly complex soot formation and oxidation process, soot emissions can’t be targeted as easily as NOX. So how can soot be kept within the limits? In principle, soot can be controlled by allocating sufficient oxygen and establishing good mixing conditions with vaporized fuel. The most effective measures target the injection system, e.g. increasing injection pressure, applying multiple injections, optimizing nozzle geometry. To investigate the impact of very high injection pressure on soot, an advanced injection system with rail pressure capability up to 3000 bar and a Bosch injector was installed at the Large Engines Competence Center (LEC) in Graz. Full load and part load operating points at constant speed and in accordance with the propeller law were investigated at the test bed to quantify the impact of high injection pressure on soot emissions. Test runs were conducted with both SCR and EGR while varying injection timing and air-fuel ratios. Use of a statistical method, Design of Experiments (DOE), helped reduce the number of tests. Optical investigations of the spray and combustion were conducted. The goal was to obtain soot concentration history traces with the two color method in order to better understand how soot originates and to be able to calibrate 3D CFD FIRE spray models for use with injection pressures of up to 3000 bar. Very low soot emissions can be achieved using high pressure injection, even when EGR is applied. DOE results provide a clear picture of the relationships between the parameters and can be used to optimize set values for the whole speed and load range. A reliable spray break up model can be used in further 3D CFD simulation to investigate how to reduce soot emissions.


Author(s):  
Xiang Li ◽  
Yi-qiang Pei ◽  
Jing Qin ◽  
Dan Zhang ◽  
Kun Wang ◽  
...  

This research systematically studied the effect of injection pressure on macroscopic spray characteristics of a five-hole gasoline direct injection (GDI) injector fueled with ethanol, especially under ultra-high injection pressure up to 50 MPa. The front and side views of sprays were photographed by the schlieren method using a high-speed camera. Various parameters, including spray development stages, cone angle, penetration, area and irregular ratio, were fully analyzed to evaluate macroscopic characteristics of the whole spray and spray core with varying injection pressure. The results demonstrated that the effect of ultra-high injection pressure on macroscopic spray characteristics was significant. As injection pressure increased from 10 MPa to 50 MPa, the occurrence time of branch-like structure decreased; the cone angle increased little; the area increased significantly; the area ratio dropped by 6.4 and 5.8 percentage points on average for the front view and side view spray, respectively. There was a significant increase in the trend for penetration as the injection pressure rose from 10 MPa to 30 MPa. However, this trend became weak when the injection pressure further increased. The penetration ratio under ultra-high injection pressure was slightly higher than it was under 10 or 20 MPa. Ultra-high injection pressure would not obviously raise the possibility of spray/wall impingement, but led to the impingement quantity increasing to some extent. Increasing injection pressure could enhance the vortex scale, finally resulting in better air/fuel mixing quality. Ultra-high injection pressure was a potential way to improve air/fuel mixture homogeneity for a GDI injector fueled with ethanol.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7142
Author(s):  
T. M. Yunus Khan ◽  
Manzoore Elahi M. Soudagar ◽  
S. V. Khandal ◽  
Syed Javed ◽  
Imran Mokashi ◽  
...  

An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work, rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work, maximum possible hydrogen substitution without knocking was reported at an injection timing of 15° before top dead center (bTDC). In the second part of the work, fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then, in the third part of the work, exhaust gas recirculation (EGR), was varied to study the nitrogen oxides (NOx) generated. At 900 bar, HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20%, EGR lowered the BTE by 14.2% and reduced hydrocarbons, nitrogen oxide and carbon monoxide by 6.3%, 30.5% and 9%, respectively, compared to the CI mode of operation.


Sign in / Sign up

Export Citation Format

Share Document