Starlet Sea Anemone (Nematostella vectensis) 2021 Environmental Summary, Reptile & Aquatics, Stowers Institute for Medical Research v1

Author(s):  
Shane C. Miller ◽  
Diana P Baumann ◽  
M. Shane Merryman

The starlet sea anemone (Nematostella vectensis) is an emerging model organism, and we have maintained a colony at the Stowers Institute since 2007. Nematostella are known as a simple sea anemone, related to other cnidarians such as jellyfish and corals. Native to estuarine environments across the Atlantic coast of North America, from Novia Scotia to Florida, they encounter a variety of environmental conditions (e.g., temperature, salinity). Acknowledging that husbandry conditions and environmental parameters can impact research results we provide information about the housing, nutrition, maintenance, and health for our colony of Nematostella. This information will be applicable to any Nematostella housed in the facility in 2021.

2021 ◽  
Author(s):  
Diana P P Baumann ◽  
Richard Kupronis

Veiled Chameleons (Chamaeleo calyptratus) are an increasingly popular model organism, and we have maintained a colony at the Stowers Institute since 2010. Due to the poikilothermic nature of these animals, achieving the correct macro and microenvironments plays an important role in successful long term colony maintenance. Despite being bred in captivity for many generations, relatively little husbandry information has been published regarding housing in a research environment. Recognizing that husbandry conditions and environmental parameters can impact research results we provide information about the housing, husbandry, maintenance, nutrition, and health for our colony of Veiled Chameleons. This information will be applicable to any chameleon housed in the facility in 2021.


2021 ◽  
Author(s):  
Shane C. Miller ◽  
M. Shane Merryman ◽  
Diana P Baumann

Planaria are an emerging model organism, and we have maintained a colony of asexual and sexual worms at the Stowers Institute for Medical Research since 2010. Their small size allows us to maintain a large census across several systems requiring a small footprint. The planaria systems at the Stowers Institute allow for standardization of husbandry and environmental parameters. Acknowledging that husbandry conditions and environmental parameters can impact research results we provide information about the housing, nutrition, maintenance, and health for our Planaria colonies. This information will be applicable to any Planaria housed in the facility in 2021.


Zootaxa ◽  
2010 ◽  
Vol 2343 (1) ◽  
pp. 66 ◽  
Author(s):  
JANINE F. SILVA ◽  
CARLOS A. C. LIMA ◽  
CARLOS D. PEREZ ◽  
PAULA B. GOMES

This is the first record of the starlet sea anemone, Nematostella vectensis Stephenson, 1935, in Southern Hemisphere waters. Specimens of N. vectensis were collected in the surroundings of the Port of Recife, Pernambuco, Brazil. The species is native to the Atlantic coast of the United States of America; populations along the Pacific coast of the USA and the coasts of England are the result of anthropogenic introduction, probably associated with ships and boats used in oyster commerce (Sheader et al. 1997; Pearson et al. 2002; Reitzel et al. 2008). The present study extends the latitudinal distribution of this species, and we discuss the presence on the Brazilian coast of this exotic species.


2021 ◽  
Author(s):  
Shelly Reuven ◽  
Mieka Rinsky ◽  
Vera Brekhman ◽  
Assaf Malik ◽  
Oren Levy ◽  
...  

AbstractIn cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.Summary statementAnalysis of transcriptional changes during spawning induction in Nematostella vectensis, revealed upregulation of processes related to signal perception and cytoskeleton rearrangement and downregulation of fatty acid metabolism and housekeeping processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shelly Reuven ◽  
Mieka Rinsky ◽  
Vera Brekhman ◽  
Assaf Malik ◽  
Oren Levy ◽  
...  

AbstractIn cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sylvia Klein ◽  
Victoria Frazier ◽  
Timothy Readdean ◽  
Emily Lucas ◽  
Erica P. Diaz-Jimenez ◽  
...  

The anthozoan sea anemone Nematostella vectensis belongs to the phylum of cnidarians which also includes jellyfish and corals. Nematostella are native to United States East Coast marsh lands, where they constantly adapt to changes in salinity, temperature, oxygen concentration and pH. Its natural ability to continually acclimate to changing environments coupled with its genetic tractability render Nematostella a powerful model organism in which to study the effects of common pollutants on the natural development of these animals. Potassium nitrate, commonly used in fertilizers, and Phthalates, a component of plastics are frequent environmental stressors found in coastal and marsh waters. Here we present data showing how early exposure to these pollutants lead to dramatic defects in development of the embryos and eventual mortality possibly due to defects in feeding ability. Additionally, we examined the microbiome of the animals and identified shifts in the microbial community that correlated with the type of water that was used to grow the animals, and with their exposure to pollutants.


2018 ◽  
Author(s):  
Ahmet Karabulut ◽  
Shuonan He ◽  
Cheng-Yi Chen ◽  
Sean A. McKinney ◽  
Matthew C. Gibson

ABSTRACTA mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) has been applied in the sea anemone Nematostella vectensis, a cnidarian model organism. Due to the unusual architecture of the cnidarian microRNA processing pathway, the shRNA approach is unusually effective for sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of Nematostella eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella vectensis eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.


Sign in / Sign up

Export Citation Format

Share Document