scholarly journals APPLICATION OF TEMPLATE FOR PRIMARY ANALYSIS OF FRONT STOP RADIOGRAPHS IN DIRECT PROJECTION IN PREOPERATIVE PLANNING

Author(s):  
G.P. Kotelnikov ◽  
D.A. Rasputin ◽  
S.D. Zuev-Ratnikov ◽  
D.S. Kudashev ◽  
G.P. Gerasimov
2020 ◽  
Author(s):  
Mark Christopher Adkins ◽  
Nataly Beribisky ◽  
Stephan Bonfield ◽  
Linda Farmus

The Psychological Science Accelerator’s (PSA) primary project tested for latent structure using exploratory factor analysis and confirmatory factor analysis but we decided to diverge from this approach and model individual traits separately. Our interest mainly was in examining the interplay between “stimulus ethnicity” and “stimulus sex” to discover how differing levels of these criterion differ across region, country, lab etc. While the necessary and prerequisite hierarchical structural information about each trait could certainly be found within the primary project’s dataset, we did not assume that any specific factor structure from the PSA’s primary analysis would necessarily hold, therefore we based our decision to model the data from each trait separately using a mixed model framework.


2020 ◽  
Vol 132 (5) ◽  
pp. 1642-1652 ◽  
Author(s):  
Timothee Jacquesson ◽  
Fang-Chang Yeh ◽  
Sandip Panesar ◽  
Jessica Barrios ◽  
Arnaud Attyé ◽  
...  

OBJECTIVEDiffusion imaging tractography has allowed the in vivo description of brain white matter. One of its applications is preoperative planning for brain tumor resection. Due to a limited spatial and angular resolution, it is difficult for fiber tracking to delineate fiber crossing areas and small-scale structures, in particular brainstem tracts and cranial nerves. New methods are being developed but these involve extensive multistep tractography pipelines including the patient-specific design of multiple regions of interest (ROIs). The authors propose a new practical full tractography method that could be implemented in routine presurgical planning for skull base surgery.METHODSA Philips MRI machine provided diffusion-weighted and anatomical sequences for 2 healthy volunteers and 2 skull base tumor patients. Tractography of the full brainstem, the cerebellum, and cranial nerves was performed using the software DSI Studio, generalized-q-sampling reconstruction, orientation distribution function (ODF) of fibers, and a quantitative anisotropy–based generalized deterministic algorithm. No ROI or extensive manual filtering of spurious fibers was used. Tractography rendering was displayed in a tridimensional space with directional color code. This approach was also tested on diffusion data from the Human Connectome Project (HCP) database.RESULTSThe brainstem, the cerebellum, and the cisternal segments of most cranial nerves were depicted in all participants. In cases of skull base tumors, the tridimensional rendering permitted the visualization of the whole anatomical environment and cranial nerve displacement, thus helping the surgical strategy.CONCLUSIONSAs opposed to classical ROI-based methods, this novel full tractography approach could enable routine enhanced surgical planning or brain imaging for skull base tumors.


Author(s):  
Olga Perski ◽  
Aleksandra Herbec ◽  
Lion Shahab ◽  
Jamie Brown

BACKGROUND The SARS-CoV-2 outbreak may motivate smokers to attempt to stop in greater numbers. However, given the temporary closure of UK stop smoking services and vape shops, smokers attempting to quit may instead seek out digital support, such as websites and smartphone apps. OBJECTIVE We examined, using an interrupted time series approach, whether the SARS-CoV-2 outbreak has been associated with a step change or increasing trend in UK downloads of an otherwise popular smoking cessation app, Smoke Free. METHODS Data were from daily and non-daily adult smokers in the UK who had downloaded the Smoke Free app between 1 January 2020 and 31 March 2020 (primary analysis) and 1 January 2019 and 31 March 2020 (secondary analysis). The outcome variable was the number of downloads aggregated at the 12-hourly (primary analysis) or daily level (secondary analysis). The explanatory variable was the start of the SARS-CoV-2 outbreak, operationalised as 1 March 2020 (primary analysis) and 15 January 2020 (secondary analysis). Generalised Additive Mixed Models adjusted for relevant covariates were fitted. RESULTS Data were collected on 45,105 (primary analysis) and 119,881 (secondary analysis) users. In both analyses, there was no evidence for a step change or increasing trend in downloads attributable to the start of the SARS-CoV-2 outbreak. CONCLUSIONS In the UK, between 1 January 2020 and 31 March 2020, and between 1 January 2019 and 31 March 2020, there was no evidence that the SARS-CoV-2 outbreak has been associated with a surge in downloads of a popular smoking cessation app. CLINICALTRIAL osf.io/zan2s


Author(s):  
Andrew Lawrence Callen ◽  
Ryan K. Badiee ◽  
Andrew Phelps ◽  
Valeria Potigailo ◽  
Eric Wang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Y. Knafo ◽  
F. Houfani ◽  
B. Zaharia ◽  
F. Egrise ◽  
I. Clerc-Urmès ◽  
...  

Two-dimensional (2D) planning on standard radiographs for total hip arthroplasty may not be sufficiently accurate to predict implant sizing or restore leg length and femoral offset, whereas 3D planning avoids magnification and projection errors. Furthermore, weightbearing measures are not available with computed tomography (CT) and leg length and offset are rarely checked postoperatively using any imaging modality. Navigation can usually achieve a surgical plan precisely, but the choice of that plan remains key, which is best guided by preoperative planning. The study objectives were therefore to (1) evaluate the accuracy of stem/cup size prediction using dedicated 3D planning software based on biplanar radiographic imaging under weightbearing and (2) compare the preplanned leg length and femoral offset with the postoperative result. This single-centre, single-surgeon prospective study consisted of a cohort of 33 patients operated on over 24 months. The routine clinical workflow consisted of preoperative biplanar weightbearing imaging, 3D surgical planning, navigated surgery to execute the plan, and postoperative biplanar imaging to verify the radiological outcomes in 3D weightbearing. 3D planning was performed with the dedicated hipEOS® planning software to determine stem and cup size and position, plus 3D anatomical and functional parameters, in particular variations in leg length and femoral offset. Component size planning accuracy was 94% (31/33) within one size for the femoral stem and 100% (33/33) within one size for the acetabular cup. There were no significant differences between planned versus implanted femoral stem size or planned versus measured changes in leg length or offset. Cup size did differ significantly, tending towards implanting one size larger when there was a difference. Biplanar radiographs plus hipEOS planning software showed good reliability for predicting implant size, leg length, and femoral offset and postoperatively provided a check on the navigated surgery. Compared to previous studies, the predictive results were better than 2D planning on conventional radiography and equal to 3D planning on CT images, with lower radiation dose, and in the weightbearing position.


2005 ◽  
Vol 29 (4) ◽  
pp. 282-291 ◽  
Author(s):  
Rebeca Mejía-Arauz ◽  
Barbara Rogoff ◽  
Ruth Paradise

Ethnographic research indicates that in a number of cultural communities, children's learning is organised around observation of ongoing activities, contrasting with heavy use of explanation in formal schooling. The present research examined the extent to which first- to third-grade children observed an adult's demonstration of how to fold origami figures or observed the folding of two slightly older children who also were trying to make the figures, without requesting further information. In the primary analysis, 10 Mexican heritage US children observed without requesting additional information to a greater extent than 10 European heritage US children. Consistent with the ethnographic literature, these two groups differed in the extent of their family's involvement in schooling; hence, we explored the relationship with maternal schooling in a secondary analysis. An additional 11 children of Mexican heritage whose mothers had extensive experience in formal school (at least a high school education) showed a pattern more like that of the European heritage children, whose mothers likewise had extensive experience in school, compared with the Mexican heritage children whose mothers had only basic schooling (an average of 7.7 grades). The results suggest that a constellation of cultural traditions that organise children's learning experiences—including Western schooling—may play an important role in children's learning through observation and explanation.


Author(s):  
Veenesh Selvaratnam ◽  
Andrew Cattell ◽  
Keith S. Eyres ◽  
Andrew D. Toms ◽  
Jonathan R. P. Phillips ◽  
...  

AbstractPatello-femoral arthroplasty (PFA) is successful in a selected group of patients and yields a good functional outcome. Robotic-assisted knee arthroplasty has been shown to provide better implant positioning and alignment. We aim to report our early outcomes and to compare Mako's (Robotic Arm Interactive Orthopaedic System [RIO]) preoperative implant planning position to our intraoperative PFA implant position. Data for this study was prospectively collected for 23 (two bilateral) patients who underwent robotic-assisted PFA between April 2017 and May 2018. All preoperative implant position planning and postoperative actual implant position were recorded. Presence of trochlear dysplasia and functional outcome scores were also collected. There were 17 (two bilateral) female and 6 male patients with a mean age of 66.5 (range: 41–89) years. The mean follow-up period was 30 (range: 24–37) months. Eighteen knees (72%) had evidence of trochlear dysplasia. The anterior trochlear line was on average, 7.71 (range: 3.3–11.3) degrees, internally rotated to the surgical transepicondylar axis and on average 2.9 (range: 0.2–6.5) degrees internally rotated to the posterior condylar line. The preoperative planning range was 4-degree internal to 4-degree external rotation, 4-degree varus to 6-degree valgus, and 7-degree flexion to 3-degree extension. The average difference between preoperative planning and intraoperative implant position was 0.43 degrees for rotation (r = 0.93), 0.99 degrees for varus/valgus (r = 0.29), 1.26 degrees for flexion/extension (r = 0.83), and 0.34 mm for proudness (r = 0.80). Six patients (24%) had a different size component from their preoperative plan (r = 0.98). The mean preoperative Oxford Knee Score (OKS) was 16 and the mean postoperative OKS was 42. No patient had implant-related revision surgery or any radiological evidence of implant loosening at final follow-up. Our early results of robotic PFA are promising. Preoperative Mako planning correlates closely with intraoperative implant positioning. Longer follow-up is needed to assess long-term patient outcomes and implant survivorship.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuetao Zhou ◽  
Dongsheng Zhang ◽  
Zexin Xie ◽  
Yang Yang ◽  
Menghui Chen ◽  
...  

Abstract Objective To explore the clinical effect of 3D printing combined with framework internal fixation technology on the minimally invasive internal fixation of high complex rib fractures. Methods Total 16 patients with high complex rib fractures were included in the study. Before the procedure, the 3D rib model was reconstructed based on the thin-layer chest CT scan. According to the 3D model, the rib locking plate was pre-shaped, and the preoperative planning were made including the direction of the locking plate, the location of each nail hole and the length of the screw. During the operation, the locking plate was inserted from the sternum to the outermost fracture lines of ribs with screws at both ends. In addition, the locking plate was used as the frame to sequentially reduce the middle fracture segment and fix with screws or steel wires. Chest x-rays or chest CT scans after surgery were used to assess the ribs recovery. All patients were routinely given non-steroidal anti-inflammatory drugs (NSAIDS) for analgesia, and the pain level was evaluated using numerical rating scale (NRS). Results The preoperative planning according to the 3D printed rib model was accurate. The reduction and fixation of each fracture segment were successfully completed through the framework internal fixation technology. No cases of surgical death, and postoperative chest pain was significantly alleviated. Five to 10 months follow up demonstrated neither loosening of screws, nor displacement of fixtures among patients. The lungs of each patients were clear and in good shape. Conclusion The application of 3D printing combined with framework internal fixation technology to the high complex rib fractures is beneficial for restoring the inherent shape of the thoracic cage, which can realize the accurate and individualized treatment as well as reduces the operation difficulty.


Author(s):  
Aurora G. Vincent ◽  
Anne E. Gunter ◽  
Yadranko Ducic ◽  
Likith Reddy

AbstractAlloplastic facial transplantation has become a new rung on the proverbial reconstructive ladder for severe facial wounds in the past couple of decades. Since the first transfer including bony components in 2006, numerous facial allotransplantations across many countries have been successfully performed, many incorporating multiple bony elements of the face. There are many unique considerations to facial transplantation of bone, however, beyond the considerations of simple soft tissue transfer. Herein, we review the current literature and considerations specific to bony facial transplantation focusing on the pertinent surgical anatomy, preoperative planning needs, intraoperative harvest and inset considerations, and postoperative protocols.


2020 ◽  
Vol 1 (1) ◽  
pp. 62-70
Author(s):  
Amir H Sadeghi ◽  
Wouter Bakhuis ◽  
Frank Van Schaagen ◽  
Frans B S Oei ◽  
Jos A Bekkers ◽  
...  

Abstract Aims Increased complexity in cardiac surgery over the last decades necessitates more precise preoperative planning to minimize operating time, to limit the risk of complications during surgery and to aim for the best possible patient outcome. Novel, more realistic, and more immersive techniques, such as three-dimensional (3D) virtual reality (VR) could potentially contribute to the preoperative planning phase. This study shows our initial experience on the implementation of immersive VR technology as a complementary research-based imaging tool for preoperative planning in cardiothoracic surgery. In addition, essentials to set up and implement a VR platform are described. Methods Six patients who underwent cardiac surgery at the Erasmus Medical Center, Rotterdam, The Netherlands, between March 2020 and August 2020, were included, based on request by the surgeon and availability of computed tomography images. After 3D VR rendering and 3D segmentation of specific structures, the reconstruction was analysed via a head mount display. All participating surgeons (n = 5) filled out a questionnaire to evaluate the use of VR as preoperative planning tool for surgery. Conclusion Our study demonstrates that immersive 3D VR visualization of anatomy might be beneficial as a supplementary preoperative planning tool for cardiothoracic surgery, and further research on this topic may be considered to implement this innovative tool in daily clinical practice. Lay summary Over the past decades, surgery on the heart and vessels is becoming more and more complex, necessitating more precise and accurate preoperative planning. Nowadays, operative planning is feasible on flat, two-dimensional computer screens, however, requiring a lot of spatial and three-dimensional (3D) thinking of the surgeon. Since immersive 3D virtual reality (VR) is an upcoming imaging technique with promising results in other fields of surgery, we aimed in this study to explore the additional value of this technique in heart surgery. Our surgeons planned six different heart operations by visualizing computed tomography scans with a dedicated VR headset, enabling them to visualize the patient’s anatomy in an immersive and 3D environment. The outcomes of this preliminary study are positive, with a much more reality-like simulation for the surgeon. In such, VR could potentially be beneficial as a preoperative planning tool for complex heart surgery.


Sign in / Sign up

Export Citation Format

Share Document