scholarly journals A Mathematical Model of the Detection Probability of the Point Target by the Operator of the Payload Electro-Optical System for Unmanned Aerial Vehicle

Author(s):  
Stepan V. Tishchenko ◽  
Stepan V. Artyshchenko

The paper deals with a mathematical model of the probability of detection of a point target by the operator of the payload of an optoelectronic device installed on an unmanned aerial vehicle, based on the use of the Johnson criterion and the binomial law of repeated tests

Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


SIMULATION ◽  
2018 ◽  
Vol 95 (6) ◽  
pp. 569-573
Author(s):  
Igor Korobiichuk ◽  
Yuriy Danik ◽  
Oleksyj Samchyshyn ◽  
Sergiy Dupelich ◽  
Maciej Kachniarz

The proposed observation model provides for calculating the probability of detection of different types of unmanned aerial vehicle (UAV) at a certain range with regard to their tactical and technical characteristics and security equipment capabilities. The comparison of the obtained values of generalized indicators of security equipment use efficiency is based on a specified criterion. To take into account factors that significantly affect a modeling object, calculations are carried out under specified conditions and restrictions. UAVs should be detected until a covering object gets in a swath width given the time required for countermeasures. Based on the software implementation of the algorithm we have evaluated the efficiency of use of hypothetical security equipment for detecting certain types of UAVs, and defined means of further use or improvement.


Author(s):  
A. A. Lobaty ◽  
Y. F. Yatsyna ◽  
V. Y. Stepanov ◽  
A. Y. Bumai

The probabilistic analysis of crossing by an unmanned aerial vehicle (UAV) of the boundary of the no-fly area is solved. Condition of stating of the fact of the violation of the boundary of the restricted area is to stand of UAV within the area during a specified time. The substantiation of the mathematical model to research through linearized vector stochastic equation is carried out. The problem is solved by applying the theory of Markov processes of random structure with absorption of realizations at the boundary of a given area. Particularity of the approach is the contemporaneously consideration of two probability densities of the distribution of phase coordinates that describe the boundary conditions. In this case, two equations systems are solved for probabilistic moments: taking into account the absorption of realizations and without taking into account the absorption. The probability of an object gets into specified area and do not leave one during the time that necessary to notice the unmanned aerial vehicle at the restricted area.


Author(s):  
A. A. Lobaty ◽  
Y. F. Yatsyna ◽  
S. S. Prohorovith ◽  
Y. A. Hvitko

The problem of determining the shape and parameters of a mathematical model in the form of a transfer function for the movement of an unmanned aerial vehicle (UAV) in the vertical plane of space is solved. The angle of deviation of the Elevator is considered as the input signal, and the pitch angle of the UAV is considered as the output signal. We use the results of experimental studies of UAV flight, which are considered as known values of input and output signals under specified flight conditions. The measured discrete values of the experimental results are approximated by a fourth-order polynomial based on regression analysis for ease of use in identification. The analytical substantiation of the need to apply the methods of linearization of the mathematical model of UAV movement and the accepted assumptions for obtaining differential equations of UAV movement relative to the center of mass, allowing to synthesize the required transfer function of the corresponding element of the UAV control system. The results of computer modeling confirmed the validity of the synthesized mathematical model obtained on the basis of structural and parametric identification. This approach can be used to obtain simplified mathematical models that are used to solve problems of synthesis and optimization of control systems not only for UAVS, but also for other dynamic objects.


2018 ◽  
Vol 221 ◽  
pp. 05003
Author(s):  
Il’ya O. Akimov ◽  
Vsevolod V. Koryanov

Unmanned aerial vehicles are used for research in many areas: photography and video shooting and so on. The development of unmanned aerial vehicles is directly related to the development of airspace. Today, a mathematical model is required that would describe the movement of such an aircraft with the purpose of predicting, correcting and optimizing it. The paper presents the results of a study of the controlled motion of an unmanned multi-rotor aircraft using the example of a quadrocopter. The study included the development of a law governing the apparatus and its modeling in the form of a software package. The structure of the autopilot, its main contours and parameters of these circuits are considered. After determining the necessary characteristics of the autopilot, modeling of the controlled motion of the quadrocopter in the execution environment was carried out.


2016 ◽  
Vol 39 (12) ◽  
pp. 1785-1797 ◽  
Author(s):  
Feng Pan ◽  
Lu Liu ◽  
Dingyu Xue

In this paper, we used a Qball-X4 quad-rotor unmanned aerial vehicle (UAV) which was developed by the Quanser Company as the experimental platform. First, a fundamental mathematical model of the Qball-X4 quad-rotor UAV was built and a simulation model was set up based on the proposed mathematical model; then, a double closed-loop optimal proportional–integral–derivative (PID) controller based on integral of time multiplied by absolute error (ITAE) indices was designed according to the model structure. In consideration of the possible system error and data delay, we designed a corresponding Kalman filter, which can estimate the target trajectory and be put before the proposed PID controller to ensure their validity. Finally, simulation results of the system with presented PID controller and Kalman filter were shown to verify their effectiveness.


Sign in / Sign up

Export Citation Format

Share Document