scholarly journals Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin

2019 ◽  
Vol 43 (11) ◽  
pp. 946-958 ◽  
Author(s):  
Jia-Yan SHEN ◽  
Shuai-Feng LI ◽  
Xiao-Bo HUANG ◽  
Zhi-Quan LEI ◽  
Xing-Quan SHI ◽  
...  



Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 688 ◽  
Author(s):  
Raúl Sanchez-Salguero ◽  
J. Camarero ◽  
Emilia Gutiérrez ◽  
Antonio Gazol ◽  
Gabriel Sangüesa-Barreda ◽  
...  

Treeline ecotones are considered early-warning monitors of the effects of climate warming on terrestrial ecosystems, but it is still unclear how tree growth at treeline will track the forecasted temperature rise in these cold environments. Here, we address this issue by analysing and projecting growth responses to climate on two different cold-limited alpine treelines: Pinus uncinata Ram. in the Spanish Pyrenees and Larix sibirica Ledeb. in the Russian Polar Urals. We assess radial-growth changes as a function of tree age and long-term climate variability using dendrochronology and a process-based model of tree growth. Climate‒growth relationships were compared considering young (age < 50 years) and old trees (age > 75 years) separately. Warm summer conditions enhanced radial growth, particularly after the 1980s, in the Polar Urals sites, whereas growth was positively related to warm spring and winter conditions in the Pyrenees sites. These associations were stronger in young than in old trees for both tree species and regions. Forecasted warm conditions are expected to enhance growth rates in both regions, while the growing season is forecasted to lengthen in the Pyrenees treelines, mostly in young trees. The observed age-related responses to temperature also depend on the forecasted warming rates. Although the temperature sensitivity is overall increasing for young trees, those responses seem more divergent, or even reversed, throughout the contrasting emission scenarios. The RCP 8.5 emission scenario corresponding to the most pronounced warming and drier conditions (+4.8 °C) could also amplify drought stress in young trees from the Pyrenees treelines. Our modelling approach provides accessible tools to evaluate functional thresholds for tree growth in treeline ecotones under warmer conditions.



2021 ◽  
Author(s):  
Jianrong Su ◽  
Jiayan Shen ◽  
Shuaifeng Li ◽  
Xiaobo Huang ◽  
Wande Liu ◽  
...  

Abstract Background The relative influence of climate change and drought events on tree growth at different altitude and tree ages remains insufficiently understood in the Jinsha River Basin, southwest China, limiting prediction of forest adaptability to high-frequency droughts and climate change. We conducted a dendroecological study to explore and quantify the dominant climate factors that determining radial growth of Pinus yunnanensis trees of different ages and at different altitudes, to evaluate their resilience to drought events. Results Radial growth of P. yunnanensis at high elevations is typically limited by low temperatures, the explanatory rate of temperature factors on growth increased from 23.6–59.7% with altitude. Tree growth at low elevations is more sensitive to moisture factors, the explanatory rate of moisture factors on growth decreased from 76.4–40.3% with altitude. The young and mature trees are more prone to moisture factors than middle-age and near-mature trees, the young and near-mature trees are more prone to temperature factors than middle-age and mature trees. The older trees usually showed less drought resistance and recovery than the young and middle-age trees. The resistance and recovery of P. yunnanensis weakened with the increased frequency of drought events. Tree resistance and resilience was highly dependent on the average pre-drought growth, whereas the recovery showed weak or no significant relationships with average pre-drought growth. Conclusion Our study demonstrates that radial growth of P. yunnanensis trees showed age- and altitude-specific demand for energy and moisture. P. yunnanensis trees at different altitudes and ages are differentially adapted to varying levels of climate stress and display different strategies to withstand the effects of drought with altitude and ages.



Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1066
Author(s):  
Lian Sun ◽  
Yanpeng Cai ◽  
Yang Zhou ◽  
Shiyuan Shi ◽  
Yesi Zhao ◽  
...  

The relationship between climate and forest is critical to understanding the influence of future climate change on terrestrial ecosystems. Research on trees at high elevations has uncovered the relationship in the Hengduan Mountains region, a critical biodiversity hotspot area in southwestern China. The relationship for the area at low elevations below 2800 m a.s.l. in the region remains unclear. In this study, we developed tree ring width chronologies of Pinus yunnanensis Franch. at five sites with elevations of 1170–1725 m in this area. Monthly precipitation, relative humidity, maximum/mean/minimum air temperature and the standardized precipitation evapotranspiration index (SPEI), a drought indicator with a multi-timescale, were used to investigate the radial growth-climate relationship. Results show that the growth of P. yunnanensis at different sites has a similar response pattern to climate variation. Relative humidity, precipitation, and air temperature in the dry season, especially in its last month (May), are critical to the radial growth of trees. Supplemental precipitation amounts and reduced mean or maximum air temperature can promote tree growth. The high correlations between chronologies and SPEI indicate that the radial growth of trees at the low elevations of the region is significantly limited by the moisture availability. Precipitation in the last month of the previous wet season determines the drought regime in the following dry seasons. In spite of some differences in the magnitudes of correlations in the low-elevation area of the Hengduan Mountains region, chronologies generally matched well with each other at different elevations, and the differences are not evident with the change in elevation.





Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.





2021 ◽  
Vol 298-299 ◽  
pp. 108297
Author(s):  
Jian Kang ◽  
Shaowei Jiang ◽  
Jacques C. Tardif ◽  
Hanxue Liang ◽  
Shaokang Zhang ◽  
...  


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.



Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 248 ◽  
Author(s):  
Bo Liu ◽  
Eryuan Liang ◽  
Kang Liu ◽  
J. Camarero


Sign in / Sign up

Export Citation Format

Share Document