scholarly journals Antioxidant potential of selected supplements in vitro and the problem of its extrapolation for in vivo

2012 ◽  
Vol 2 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Julija Ogrin Papić ◽  
Borut Poljšak

Introduction: antioxidants, free radicals and oxidative stress have been studied extensively for quite some time but their role in diseases and their prevention has not been clearly determined. Because commercialantioxidants do not need to pass clinical tests in order to be sold over the counter we have decided to test the antioxidant potential of different commercial preparations with the antioxidative properties.Methods: pH, rH and oxidant-reduction potential of different preparations in aqueous solution was measured. Afterwards antioxidant potential using FormPlus® after adding the preparation to human blood as a morecomplex environment with different homeostasis mechanisms was determined.Results: all the results showed expected change compared to the control but the results in aqueous solution did not match the results obtained from the human blood, as was expected.Conclusion: from the experiments it can be concluded that while the preparations did show antioxidant activity, it is very difficult and even wrong to predict the antioxidant potential of an antioxidant preparationadded to human blood, let alone in a living organism, based just on the results obtained in aqueous solution. Further possibilities for research include more extensive studies of antioxidant preparations in more complex environment and last but not least in test organisms or in human trials.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2019 ◽  
Vol 317 (1) ◽  
pp. F30-F42
Author(s):  
Te-Jung Lu ◽  
Wei-Chih Kan ◽  
Sung-Sen Yang ◽  
Si-Tse Jiang ◽  
Sheng-Nan Wu ◽  
...  

Liddle syndrome is an inherited form of human hypertension caused by increasing epithelial Na+ channel (ENaC) expression. Increased Na+ retention through ENaC with subsequent volume expansion causes hypertension. In addition to ENaC, the Na+-K+-Cl− cotransporter (NKCC) and Na+-Cl− symporter (NCC) are responsible for Na+ reabsorption in the kidneys. Several Na+ transporters are evolutionarily regulated by the Ste20 kinase family. Ste20-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 phosphorylate downstream NKCC2 and NCC to maintain Na+ and blood pressure (BP) homeostasis. Mammalian Ste20 kinase 3 (MST3) is another member of the Ste20 family. We previously reported that reduced MST3 levels were found in the kidneys in spontaneously hypertensive rats and that MST3 was involved in Na+ regulation. To determine whether MST3 is involved in BP stability through Na+ regulation, we generated a MST3 hypomorphic mutation and designated MST3+/− and MST3−/− mice to examine BP and serum Na+ and K+ concentrations. MST3−/− mice exhibited hypernatremia, hypokalemia, and hypertension. The increased ENaC in the kidney played roles in hypernatremia. The reabsorption of more Na+ promoted more K+ secretion in the kidney and caused hypokalemia. The hypernatremia and hypokalemia in MST3−/− mice were significantly reversed by the ENaC inhibitor amiloride, indicating that MST3−/− mice reabsorbed more Na+ through ENaC. Furthermore, Madin-Darby canine kidney cells stably expressing kinase-dead MST3 displayed elevated ENaC currents. Both the in vivo and in vitro results indicated that MST3 maintained Na+ homeostasis through ENaC regulation. We are the first to report that MST3 maintains BP stability through ENaC regulation.


2016 ◽  
Vol 42 (11) ◽  
pp. 1813-1824 ◽  
Author(s):  
Jessica Mendes Nadal ◽  
Mona Lisa Simionatto Gomes ◽  
Débora Maria Borsato ◽  
Martinha Antunes Almeida ◽  
Fernanda Malaquias Barboza ◽  
...  

Author(s):  
Nithya R ◽  
Subramanian S

Objective: This study was aimed to evaluate the antioxidant potential of sinapic acid in both in vitro and in vivo. Recently, we have reported that oral administration of sinapic acid (3,5-dimethoxy 4-hydroxycinnamic acid) an active phyto ingredient widely distributed in rye, mustard, berries, and vegetables has been shown to ameliorate hyperglycemia.Methods: Experimental Type 2 diabetes was induced in male Wistar rats by feeding high-fat diet to induce insulin resistance followed by intraperitoneal administration of a single low dose streptozotocin (35 mg/kg body weight [bw]). Sinapic acid was administered orally at a concentration of 25 mg/kg bw/rat/day for 30 days, and its efficacy was compared with metformin. In vitro, antioxidant scavenging properties of sinapic acid were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), superoxide, and nitric oxide (NO) assay.Results: Sinapic acid treatment showed a significant decline in the levels of lipid peroxides, hydroperoxides and protein carbonyls in the plasma and vital tissues of diabetic rats. The treatment also improved the antioxidant status in diabetic rats indicating the antioxidant potential of sinapic acid. In addition, the results of DPPH, ABTS, superoxide, and NO radical scavenging assays substantiate the free radical scavenging efficacy of sinapic acid.Conclusion: The results of this study evidenced that sinapic acid possess significant antioxidant properties which in turn may be responsible for its antidiabetic properties.


Author(s):  
Zafarullah Muhammad ◽  
Rabia Ramzan ◽  
Ruifen Zhang ◽  
Dong Zhao ◽  
Mehak Gul ◽  
...  

Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)–based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Małgorzata Kania-Dobrowolska ◽  
Justyna Baraniak ◽  
Aleksandra Górska ◽  
Marlena Wolek ◽  
Anna Bogacz

Atherosclerosis and type II diabetes can be classified as lifestyle diseases. Unbalanced diet (highly processed food, excess salt food), a sedentary lifestyle and the use of stimulants (cigarettes, alcohol) can contribute to the emergence of both diseases. Both these diseases can coexist simultaneously. The development of type 2 diabetes may accelerate the development of atherosclerotic plaque, which in turn leads to many organ complications as well as death. People with slightly elevated glucose and cholesterol levels can be advised to take natural plant ingredients such as garlic and ginger along with changing their diet and increasing physical activity. garlic and ginger can be consumed alone as well as an addition to many dishes. In vitro and in vivo and clinical tests indicate the possibility of supporting the regulation of blood glucose and cholesterol levels by adding garlic and ginger to the diet.


Sign in / Sign up

Export Citation Format

Share Document