scholarly journals Study of the Perception of Written Speech Using Functional Tomography Based On Electroencephalography Data

Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
E.F. Tarasov ◽  
I.V. Zhuravlev ◽  
...  

The spectral and spatial characteristics of the electroencephalograms recorded during the perception of written speech were studied. For the experimental study, four groups were formed, each containing 100 words: words with a positive emotional rating, words with a negative emotional rating, words with concrete meanings, and words with abstract meanings. A separate experiment was conducted for each group with the subjects. Words were represented by white text on a black background, each word was presented for 1000 ms, after the presentation of the stimulus there was a pause of 500 ms. Brain activity was recorded using an electroencephalograph with 19 leads, arranged according to the 10–20 scheme. For detailed quantitative analysis of this activity, method of functional tomography of the brain, based on electroencephalography data, was used. This method is based on the Fourier transform of multichannel encephalographic data and the localization of individual spectral components. The method makes it possible to single out and stably localize in space various spectral features of the brain activity studied in experiments on speech research. The frequency band from 8 to 30 Hz was analyzed; for all spectral components in this band, the inverse problem was solved in the approximation of an equivalent current dipole in a single-layer spherical conductor, without any restrictions on the position of the source. As a result, three-dimensional maps of activity were built - the functional structures of the brain. The presentation of these functional structures on magnetic resonance imaging allows one to study the frequency and spatial characteristics of responses to various speech stimuli.

2019 ◽  
Vol 17 (3) ◽  
pp. 18-28
Author(s):  
E. Bykova ◽  
A. Savostyanov

Despite the large number of existing methods of the diagnosis of the brain, brain remains the least studied part of the human body. Electroencephalography (EEG) is one of the most popular methods of studying of brain activity due to its relative cheapness, harmless, and mobility of equipment. While analyzing the EEG data of the brain, the problem of solving of the inverse problem of electroencephalography, the localization of the sources of electrical activity of the brain, arises. This problem can be formulated as follows: according to the signals recorded on the surface of the head, it is necessary to determine the location of sources of these signals in the brain. The purpose of my research is to develop a software system for localization of brain activity sources based on the joint analysis of EEG and sMRI data. There are various approaches to solving of the inverse problem of EEG. To obtain the most exact results, some of them involve the use of data on the individual anatomy of the human head – structural magnetic resonance imaging (sMRI data). In this paper, one of these approaches is supposed to be used – Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA) proposed by A. Tsai. The article describes the main stages of the system, such as preprocessing of the initial data; the calculation of the special matrix of the EMSICA approach, the values of which show the level of activity of a certain part of the brain; visualization of brain activity sources on its three-dimensional model.


Author(s):  
Silvia Erika Kober ◽  
Johanna Louise Reichert ◽  
Daniela Schweiger ◽  
Christa Neuper ◽  
Guilherme Wood

Neurofeedback (NF) is a Brain-Computer Interface (BCI) application, in which the brain activity is fed back to the user in real-time enabling voluntary brain control. In this context, the significance of the feedback design is mainly unexplored. Highly immersive feedback scenarios using virtual reality (VR) technique are available. However, their effects on subjective user experience as well as on objective outcome measures remain open. In the present article, we discuss the general pros and cons of using VR as feedback modality in BCI applications. Furthermore, we report on the results of an empirical study, in which the effects of traditional two-dimensional and three-dimensional VR based feedback scenarios on NF training performance and user experience in healthy older individuals and neurologic patients were compared. In conclusion, we suggest indications and contraindications of immersive VR feedback designs in BCI applications. Our results show that findings in healthy individuals are not always transferable to patient populations having an impact on serious game and feedback design.


Nuncius ◽  
2017 ◽  
Vol 32 (2) ◽  
pp. 412-439
Author(s):  
Flora Lysen

This article traces attempts in the 1930s to create a spatio-temporal model of the active, living brain. Images and models of electric, illuminated displays – derived from electro-technology and engineering – allowed for a changing imaginary of a brain that was immediately accessible. The example of the Luminous Brain Model, a three-dimensional science education model, demonstrates how the visual language of illumination could serve as a flexible rhetorical tool that offered sensations of liveliness to modern viewers and promised to show a transparent view of a dynamic brain. Alternatively, various scientists in the 1930s used the analogy of the brain as an illuminated electric news ticker to conceptualize temporal patterns of changing brain activity, thus drawing the brain into a new metropolitan sphere of material surfaces with real-time mediation. These two historical imaginaries of blinking brains reveal new trajectories of the ‘metaphorical circuits’ through which technology and cerebral biology are mutually articulated.


Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova

New method for the data analysis was proposed, making it possible to transform multichannel time series into the spatial structure of the system under study. The method was successfully used to investigate biological and physical objects based on the magnetic field measurements. In this paper we further develop this method to analyze the data of the experiments where the electric field is measured. The brain activity in the state of subject “eyes closed” was registered by the 19-channel electric encephalograph, using the 10-20 scheme. The electroencephalograms were obtained in resting state and with arbitrary hands motions. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. All spectral data revealed the broad alpha rhythm peak in the frequency band 9-12 Hz. For all spectral components in this band the inverse problem was solved, and the 3D map of the brain activity was calculated. The inverse problem was solved in elementary current dipole model for one-layer spherical conductor without any restrictions for the source position. The combined analysis of the magnetic resonance image and the brain functional structure leads to the conclusion that this structure generally corresponds to the modern knowledge about the alpha rhythm. The 3D map of the vector field of the dominating directions of the alpha rhythm sources was also generated. The proposed method can be used to study the spatial distribution of the brain activity in any spectral band of the electroencephalography data.


Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
N.M. Pankratova

New method for the magnetic encephalography data analysis was proposed, making it possible to transform multichannel time series into the spatial structure of the human brain activity. In this paper we applied this method to the analysis of magnetic encephalograms, obtained from subjects with attention deficit and hyperactivity disorder. We have considered the experimental data, obtained with 275-channel magnetic encephalographs in McGill University and Montreal University. Magnetic encephalograms of the brain spontaneous activity were registered for 5 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the broad frequency band 0.3-50 Hz. It was found that frequency band relations are different in different experiments. We proposed to use these relations by the summary electric power produced by the sources in selected frequency band. The delta rhythm in frequency band 0.3 to 4 Hz was studied in detail. It was found, that many delta rhythm dipoles were localized outside the brain, and their spectrum consists of the heartbeat harmonics. It was concluded that in experiments considered, the delta rhythm represents the vascular activity of the head. To study the spatial distribution of all rhythms from theta to gamma the partial spectra of the brain divisions were calculated. The partial spectrum includes all frequencies produced by the dipole sources located in the region of brain selected at the magnetic resonance image. The method can be further applied to study encephalograms in various psychic disorders.


2020 ◽  
Author(s):  
Andrew Fingelkurts ◽  
Alexander Fingelkurts ◽  
Tarja Kallio-Tamminen

Recently, a three-dimensional construct model for complex experiential Selfhood has been proposed (Fingelkurts et al., 2016b,c). According to this model, three specific subnets (or modules) of the brain self-referential network (SRN) are responsible for the manifestation of three aspects/features of the subjective sense of Selfhood. Follow up multiple studies established a tight relation between alterations in the functional integrity of the triad of SRN modules and related to them three aspects/features of the sense of self; however, the causality of this relation is yet to be shown. In this article we approached the question of causality by exploring functional integrity within the three SRN modules that are thought to underlie the three phenomenal components of Selfhood while these components were manipulated mentally by experienced meditators in a controlled and independent manner. Participants were requested, in a block-randomised manner, to mentally induce states representing either increased (up-regulation) or decreased (down-regulation) sense of (a) witnessing agency (“Self”), or (b) body representational-emotional agency (“Me”), or (c) reflective/narrative agency (“I”), while their brain activity was recorded by an electroencephalogram (EEG). This EEG-data was complemented by first-person phenomenological reports and standardised questionnaires which focused on subjective contents of three aspects of Selfhood. The results of the study strengthen the case for a direct causative relationship between three phenomenological aspects of Selfhood and related to them three modules of the brain SRN. Furthermore, the putative integrative model of the dynamic interrelations among three modules of the SRN has been proposed.


2019 ◽  
Author(s):  
Amirouche Sadoun ◽  
Tushar Chauhan ◽  
Samir Mameri ◽  
Yifan Zhang ◽  
Pascal Barone ◽  
...  

AbstractModern neuroimaging represents three-dimensional brain activity, which varies across brain regions. It remains unknown whether activity within brain regions is organized in spatial configurations to reflect perceptual and cognitive processes. We developed a rotational cross-correlation method allowing a straightforward analysis of spatial activity patterns for the precise detection of the spatially correlated distributions of brain activity. Using several statistical approaches, we found that the seed patterns in the fusiform face area were robustly correlated to brain regions involved in face-specific representations. These regions differed from the non-specific visual network meaning that activity structure in the brain is locally preserved in stimulation-specific regions. Our findings indicate spatially correlated perceptual representations in cerebral activity and suggest that the 3D coding of the processed information is organized in locally preserved activity patterns. More generally, our results provide the first demonstration that information is represented and transmitted as local spatial configurations of brain activity.


Author(s):  
Michio Sugeno ◽  
◽  
Takahiro Yamanoi ◽  

This paper discusses brain activity during the understanding of sentences from the perspective of Systemic Functional Linguistics. We focus on ideational meaning (propositional meaning in an ordinary sense) and interpersonal meaning (as is typically seen in honorific expressions). The present study is an experimental exploration of the spatiotemporal pathways of neuronal activation. Japanese sentences containing and not containing honorific expressions are compared in electroencephalography experiments. In these experiments, the sentences without honorific expressions have ideationalmeaning, but those with honorific expressions have both ideational and interpersonal meanings. Through the use of the equivalent current dipole source localization method, the spatiotemporal processes of activation of the brain are analyzed. There is a single pathway during the understanding of the sentences without honorific expressions; this pathway is mainly observed in the left hemisphere. On the other hand, there are three pathways in the case of the sentences with honorific expressions, two of which are observed in the right hemisphere. The remaining pathway is the same as the aforementioned single pathway. This fact strongly suggests that the common pathway is concerned with processing ideational meaning. The other two pathways observed during understanding of the sentences with honorific expressions are considered to be related to processing interpersonal meaning.


Author(s):  
N.M. Pankratova ◽  
M.A Polikarpov ◽  
E.F. Tarasov ◽  
S.D. Rykunov ◽  
M.N. Ustinin

Spectral and spatial characteristics of the encephalograms, registered while speech perception and production, are considered. Systematical bibliographical review is presented, including the articles studying the speech sources spectra and their location in the brain. Encephalography is selected as a basic experimental approach. Advantages of the magnetic encephalography, experimental difficulties and possible artifacts are noted. It is concluded that brain speech activity possesses a great variety of spectral and spatial features. The method of functional tomography based on magnetic encephalography data is proposed to quantitatively analyze this activity in detail. The method makes it possible to extract and precisely localize in space various spectral features of the brain activity studied in experiments on speech research.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Sign in / Sign up

Export Citation Format

Share Document