USE OF STEM WATER POTENTIAL MEASUREMENTS TO CORRECT CROP WATER NEEDS ESTIMATIONS IN A ROTATION OF TWO HORTICULTURAL CROPS

2008 ◽  
pp. 147-154
Author(s):  
C. Campillo ◽  
M.H. Prieto ◽  
C. Daza ◽  
M.J. Moñino ◽  
M.I. Garcia
2021 ◽  
Author(s):  
Marta Rodríguez-Fernández ◽  
María Fandiño ◽  
Xesús Pablo González ◽  
Javier J. Cancela

<p>The estimation of the water status in the vineyard, is a very important factor, in which every day the winegrowers show more interest since it directly affects the quality and production in the vineyards. The situation generated by COVID-19 in viticulture, adds importance to tools that provide information of the hydric status of vineyard plants in a telematic way.</p><p>In the present study, the stem water potential in the 2018 and 2019 seasons, is analysed in a vineyard belonging to the Rias Baixas wine-growing area (Vilagarcia de Arousa, Spain), with 32 sampling points distributed throughout the plot, which allows the contrast and validation with the remote sensing methodology to estimate the water status of the vineyard using satellite images.</p><p>The satellite images have been downloaded from the Sentinel-2 satellite, on the closets available dates regarding the stem water potential measurements, carried out in the months of June to September, because this dates are considered the months in which vine plants have higher water requirements.</p><p>With satellite images, two spectral index related to the detection of water stress have been calculated: NDWI (Normalized Difference Water Index) and MSI (Moisture Stress Index). Stem water potential measurements, have allowed a linear regression with both index, to validate the use of these multispectral index to determine water stress in the vineyard.</p><p>Determination coefficients of r<sup>2</sup>=0.62 and 0.67, have been obtained in July and August 2018 and 0.54 in June of 2019 for the NDWI index, as well as values of 0.53 and 0.63 in July 2018 and June 2019 respectively, when it has been analysed the MSI index.</p><p>Between both seasons, the difference observed, that implies slightly greater water stress in 2019, is reflected in the climate conditions during the summer months, with an average accumulated rainfall that doesn’t exceed 46 mm of water. Although, the NDWI index has allowed to establish better relationships in the 2018 season respect to the MSI index and the 2019 season, (r<sup>2</sup>=0.60 NDWI in 2018), as well as greater differences in terms of water stress presented in the vineyard.</p><p>With the spectral index calculated, it has been possible to validate the use of these index for the determination of the water stress of the vineyard plants, as an efficient, fast and less expensive method, which allows the application of an efficient irrigation system in the vineyard.</p>


2007 ◽  
Vol 58 (7) ◽  
pp. 670 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Crop water relations, vegetative and reproductive growth, and soil water status were studied during 2 seasons to determine the effectiveness of partial rootzone drying (PRD) in a mature micro-irrigated pear orchard in the Goulburn Valley, Australia. PRD treatments were 50% (PRD50) and 100% (PRD100) of predicted crop water requirement (ETc) applied on one side of the tree alternated on a 14-day cycle compared with a Control treatment, which received 100% of ETc irrigated on both sides of the tree. Irrigation was applied daily by micro-jets to replace ETc estimated using reference crop evapotranspiration (ETo) and a FAO-56 crop coefficient of 1.15 adjusted for tree size. The PRD50 regime applied 174–250 mm for the season v. 347–470 mm for both the Control and PRD100 treatments. Irrigation maintained a well watered rootzone under the emitter compared with the drying profiles of the alternated wet/dry irrigated zones of the PRD treatments. There was no significant benefit of PRD100 compared with the Control irrigation regime. Similar vegetative growth (canopy radiation interception), reproductive growth (fruit growth rate, final fruit size, yield), fruit quality (total soluble solids, flesh firmness), and crop water relations (midday leaf conductance, midday leaf and stem water potential) were measured between the Control and PRD100. Trees under the PRD50 regime showed symptoms of severe water stress, that being greater fruit drop, reduced fruit size, lower yield, reduced leaf conductance, and lower leaf and stem water potential. The 50% water saving afforded by PRD50 led to a yield penalty of 16–28% compared with the Control and PRD100. PRD50 fruit failed to meet commercial cannery requirements due to poor fruit size. We conclude from an agronomic basis that deficit PRD irrigation management is not recommended for micro-irrigated pear orchards on fine-textured soils in the Goulburn Valley, Australia.


2002 ◽  
Vol 127 (3) ◽  
pp. 448-454 ◽  
Author(s):  
L.E. Williams ◽  
F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.


2020 ◽  
Author(s):  
Donatella Spano ◽  
Mauro Locascio ◽  
Serena Marras ◽  
Richard L Snyder ◽  
Massimiliano Giuseppe Mameli ◽  
...  

&lt;p&gt;The wine market is increasing in economic importance, so it is crucial for producers to be competitive, efficient, and productive. In addition, climate change requires the adoption of adaptive strategies for a more efficient management of natural resources. Especially in semi-arid regions, the limitation in water availability for crop farming requires adaptive strategies aiming to optimize water productivity. Knowing the optimal moment for irrigation and the water amount to apply is essential information for deficit irrigation of wine grapes. Stem water potential measurements, using the pressure chamber approach, provide an accurate technique for determining plant water status and timing irrigation. In combination with accurate ET measurements, the plant-based measurements offer the information needed to establish water saving deficit irrigation schedules. Collecting stem water potential data, however, is time-consuming and labour-intensive. This work presents the preliminary results of a comparison between new plant-based sensors, which continuously monitor the water status using an automated platform. &amp;#160;A field study was conducted on a representative vineyard located in the Mediterranean Basin (Sardinia, Italy). Sensor data were compared to measurements of stem water potential. Two treatments were employed in the experiment: i) mild to moderate water stress conditions were applied from fruit set until ripening; ii) no irrigation from bunch closure until harvest, which resulted in moderate to severe water deficit conditions. In both treatments, stem water potential measurements were monitored weekly on adult leaves with a pump-up pressure chamber, while the T-Max method was used to determine the xylem sap flow. Leaf thickness, an indirect measurement of leaf turgor, was measured with a commercial sensor. Preliminary results showed a good potential for these promising techniques that may monitor proxies of the vine water status in an automated way, giving useful and user-friendly information for planning efficient irrigation schedules. In addition, micrometeorological &amp;#160;measurements provide a method for assessing the actual ET rates between irrigation events, and this effort will be studied in future field experiments. Preliminary results showed a good potential for these promising techniques that may monitor proxies of the vine water status in an automated way that, in conjunction with reliable ET estimates, provide the information needed to determine user-friendly information for planning efficient irrigation schedules for deficit irrigated wine grapes.&lt;/p&gt;


2021 ◽  
Vol 13 (4) ◽  
pp. 1759
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan

The availability and proper irrigation scheduling of water are some of the most significant limitations on citrus production in Florida. The proper volume of citrus water demand is vital in evaluating sustainable irrigation approaches. The current study aims to determine the amount of irrigation required to grow citrus trees at higher planting densities without detrimental impacts on trees’ water relation parameters. The study was conducted between November 2017 and September 2020 on young sweet orange (Citrus sinensis) trees budded on the ‘US-897’ (Cleopatra mandarin x Flying Dragon trifoliate orange) citrus rootstock transplanted in sandy soil at the Southwest Florida Research and Education Center (SWFREC) demonstration grove, near Immokalee, Florida. The experiment contained six planting densities, including 447, 598, and 745 trees per ha replicated four times, and 512, 717, and 897 trees per ha replicated six times. Each density treatment was irrigated at 62% or 100% during the first 15 months between 2017 and 2019 or one of the four irrigation rates (26.5, 40.5, 53, or 81%) based on the calculated crop water supplied (ETc) during the last 17 months of 2019–2020. Tree water relations, including soil moisture, stem water potential, and water supplied, were collected periodically. In addition, soil salinity was determined. During the first year (2018), a higher irrigation rate (100% ETc) represented higher soil water contents; however, the soil water content for the lower irrigation rate (62% ETc) did not represent biological stress. One emitter per tree regardless of planting density supported stem water potential (Ψstem) values between −0.80 and −0.79 MPa for lower and full irrigation rates, respectively. However, when treatments were adjusted from April 2019 through September 2020, the results substantially changed. The higher irrigation rate (81% ETc) represented higher soil water contents during the remainder of the study, the lower irrigation rate (26.5% ETc) represents biological stress as a result of stem water potential (Ψstem) values between −1.05 and −0.91 MPa for lower and higher irrigation rates, respectively. Besides this, increasing the irrigation rate from 26.5% to 81%ETc decreased the soil salinity by 33%. Although increasing the planting density from 717 to 897 trees per hectare reduced the water supplied on average by 37% when one irrigation emitter was used to irrigate two trees instead of one, applying an 81% ETc irrigation rate in citrus is more efficient and could be managed in commercial groves.


2021 ◽  
Vol 13 (9) ◽  
pp. 1837
Author(s):  
Eve Laroche-Pinel ◽  
Sylvie Duthoit ◽  
Mohanad Albughdadi ◽  
Anne D. Costard ◽  
Jacques Rousseau ◽  
...  

Wine growing needs to adapt to confront climate change. In fact, the lack of water becomes more and more important in many regions. Whereas vineyards have been located in dry areas for decades, so they need special resilient varieties and/or a sufficient water supply at key development stages in case of severe drought. With climate change and the decrease of water availability, some vineyard regions face difficulties because of unsuitable variety, wrong vine management or due to the limited water access. Decision support tools are therefore required to optimize water use or to adapt agronomic practices. This study aimed at monitoring vine water status at a large scale with Sentinel-2 images. The goal was to provide a solution that would give spatialized and temporal information throughout the season on the water status of the vines. For this purpose, thirty six plots were monitored in total over three years (2018, 2019 and 2020). Vine water status was measured with stem water potential in field measurements from pea size to ripening stage. Simultaneously Sentinel-2 images were downloaded and processed to extract band reflectance values and compute vegetation indices. In our study, we tested five supervised regression machine learning algorithms to find possible relationships between stem water potential and data acquired from Sentinel-2 images (bands reflectance values and vegetation indices). Regression model using Red, NIR, Red-Edge and SWIR bands gave promising result to predict stem water potential (R2=0.40, RMSE=0.26).


Sign in / Sign up

Export Citation Format

Share Document