Effect of intracanopy lighting and/or root-zone temperature on high-wire tomato production under supra-optimal air temperature

2016 ◽  
pp. 63-70
Author(s):  
C. Gómez ◽  
M. Clark ◽  
C.A. Mitchell
HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1160b-1160
Author(s):  
Khin San Wai ◽  
S.E. Newman

The response of Antirrhinum majus (snapdragon) cultivars (`Tampicoi' and `Rainier White') to night air temperatures (10C and 20C) and elevated root-zone temperature (26C and ambient) was studied. Height of plants grown with a heated root-zone were greater, compared to unheated at both night temperatures for both cultivars. Shoot dry weight of `Tampico' plants was reduced by heated root-zone temperature at 20C night air temperature. Raceme length was greater with heated root-zone temperature compared to unheated at 10C night air temperature. Days to flower were shorter with heated compared to unheated root-zone at both night air temperatures for both cultivars. Stomatal diffusive resistance was greater on plants with unheated compared to heated root-zone temperature at 10C night air temperature for `Rainier White'.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laura Carotti ◽  
Luuk Graamans ◽  
Federico Puksic ◽  
Michele Butturini ◽  
Esther Meinen ◽  
...  

This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 μmol m–2 s–1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 μmol m–2 s–1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 μmol m–2 s–1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 μmol m–2 s–1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 μmol m–2 s–1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 μmol m–2 s–1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the “optimal” PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.


2002 ◽  
Vol 127 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Qingzhang Xu ◽  
Bingru Huang ◽  
Zhaolong Wang

High air and soil temperatures are major factors limiting growth of cool-season grasses. A previous study by the authors reported that a soil temperature reduction of only 3 °C when air temperature was maintained at 35 °C significantly improved shoot and root growth of creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds.) Farw. (syn. A. palustris Huds.)]. This study was designed to investigate the responses of photosynthetic activities of creeping bentgrass to lowered root-zone temperatures from the supraoptimal level when shoots were exposed to high air temperature. Two cultivars of creeping bentgrass, `L-93' and `Penncross', were exposed to the following air/root-zone temperature regimes in growth chambers and water baths: 1) optimal air and soil temperatures (20/20 °C, control); 2) lowering soil temperature by 3, 6, and 11 °C from 35 °C at high air temperatures (35/32, 35/29, and 35/24 °C); and 3) high air and soil temperatures (35/35 °C). Soil temperature was reduced from 35 °C by circulating cool water (18 °C) in water baths at variable flow rates. Both cultivars had similar responses to high or low root-zone temperatures with high air temperature. High air and root-zone temperatures caused significant reductions in canopy photosynthetic rate (Pcanopy), single-leaf photosynthetic rate (Pleaf), leaf chlorophyll content, photochemical efficiency (Fv/Fm), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, beginning on day 1 of high air and soil temperature stress for Pcanopy and Pleaf, and day 7 for chlorophyll content, Fv/Fm, and Rubisco activity. The 3 °C reduction in root-zone temperature at high air temperature had no effect on those photosynthetic parameters, except chlorophyll content. Reducing root-zone temperature by 6 °C or 11 °C while maintaining air temperature at 35 °C significantly improved Pcanopy, Poleaf, leaf chlorophyll content, Fv/Fm, and Rubisco activity. Single leaf photosynthetic rate at 35/24 °C was not different from the control level, but Pcanopy at 35/24 °C was lower than the control level. A reduction in root-zone temperature enhanced canopy and single-leaf photosynthetic capacity even though shoots were exposed to supraoptimal air temperature, which could contribute to improved turfgrass growth.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 688b-688
Author(s):  
Yong-Zhan Ma ◽  
Martin P.N. Gent

Tomato (Lycopersicon esculentum Mill) seedlings were grown with air temperature of 28°C light/12°C dark (12/12 hours), and either a constant, 20°C, root-zone temperature (RZT), or in-phase with air temperature, 28°C in the light and 12°C in the dark, or out-of-phase, 12°C in the light and 28°C in the dark. These treatments were applied from 17 to 25 days after germination, with 200 m \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} in flowing nutrient solution. The relative growth rate of leaves was the greatest with constant RZT, 0.33/d, and least with out-of-phase RZT, 0.29/d. The concentration of free amino acid and protein in leaves was least for out-of-phase RZT. The \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration in leaves was the highest in the dark, intermediate in the middle of the light period, and the lowest at the end of the light period. In roots, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration showed a similar trend. This variation was greatest when RZT was varied out of phase, and least with constant RZT. At the end of the light period, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration in roots was 246, 180, and 162 μmol·g–1 dry weight for constant, in phase, and out of phase RZT, respectively. In the light, leaves of seedlings grown with out-of-phase RZT had 5 mmol·g–1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document}, compared to 16 mmol·g–1 with in-phase RZT Availability of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} in the light may be the factor limiting plant growth with out-of-phase RZT. This research was supported in part by grant number 93-37100-9101 from the National Research Initiative Competitive Grants Program/USDA.


2007 ◽  
Vol 132 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Oscar Monje ◽  
Sylvia Anderson ◽  
Gary W. Stutte

The effect of elevated root zone temperature (+0, +4, +6, +8, and +11 °C) on growth rates and carbon partitioning of ‘USU-Apogee’ spring wheat (Triticum aestivum L.) plants growing at constant air temperature (24 °C) in Turface was investigated. This experiment was performed to determine if wheat growth responded to elevated root zone temperature (RZT) and if so, to determine the temperatures for those responses. The RZT treatments were initiated 5 d after planting (DAP) to prevent RZT effects on germination from affecting results. The effects of increased RZT on development and carbon partitioning were determined from data collected during destructive harvests at 7, 15, 22, and 28 DAP. At a constant air temperature of 24 °C, reduced plant height was observed by 15 DAP at 30 °C RZT (+6 °C), and reduced leaf area was observed by 22 DAP at 28 °C RZT (+4 °C). Changes in leaf photosynthesis and stomatal conductance (g S) were not observed until 35 °C RZT (+11 °C), which was lethal by 22 DAP. Changes in carbon partitioning resulted in decreased leaf mass and increased stem and head mass fractions as well as accelerated development of reproductive structures. Although elevated RZT temperatures above air temperature affected physiological and morphologic parameters, they did not change plant phenology.


2020 ◽  
Vol 5 (1) ◽  
pp. 317-324
Author(s):  
Kayla Snyder ◽  
Christopher Murray ◽  
Bryon Wolff

AbstractTo address agricultural needs of the future, a better understanding of plastic mulch film effects on soil temperature and moisture is required. The effects of different plant type and mulch combinations were studied over a 3.5-month period to better grasp the consequence of mulch on root zone temperature (RZT) and moisture. Measurements of (RZT) and soil moisture for tomato (Solanum lycopersicum), pepper (Capsicum annuum) and carrot (Daucus carota) grown using polyolefin mulch films (black and white-on-black) were conducted in Ontario using a plot without mulch as a control. Black mulch films used in combination with pepper and carrot plants caused similar RZTs relative to uncovered soil, but black mulch film in combination with tomato plants caused a reduction in RZT relative to soil without mulch that increased as plants grew and provided more shade. White-on-black mulch film used in combination with tomatoes, peppers or carrots led to a reduction in RZT relative to soil without mulch that became greater than the temperature of soil without mulch. This insulative capability was similarly observed for black mulch films used with tomato plants. Apart from white-on-black film used in combination with tomatoes, all mulch film and plant combinations demonstrated an ability to stabilize soil moisture relative to soil without mulch. RZT and soil moisture were generally stabilized with mulch film, but some differences were seen among different plant types.


1987 ◽  
Vol 67 (2) ◽  
pp. 409-415 ◽  
Author(s):  
A. MENKIR ◽  
E. N. LARTER

Based on the results of an earlier paper, 12 inbred lines of corn (Zea mays L.) were evaluated for emergence and seedling growth at three controlled root-zone temperatures (10, 14, and 18 °C). Low root-zone temperatures, 10 and 14 °C, were detrimental to emergence, seedling growth, and root growth of all inbred lines. Differential responses of inbred lines were observed within each temperature regime. The differences in seedling emergence among lines became smaller with increasing root-zone temperature, while the reverse was true for seedling dry weight. Simple correlation coefficients showed a significantly (P = 0.05) negative association between emergence percentage and emergence index (rate). Neither of these two emergence traits was significantly correlated with seedling dry weights. Seedling dry weights were significantly (P = 0.01) and positively associated with root dry weights. Two inbred lines exhibited good tolerance to low root-zone temperatures, viz. CO255 and RB214. A significant and positive correlation existed between emergence percentage at a root-zone temperature of 10 °C and field emergence in test with the same genotypes reported earlier. Selection at a root-zone temperature of 10 °C for a high percentage of seedling emergence, therefore, could be effective in identifying genotypes capable of germinating in cool soils. Furthermore, the significantly (P = 0.01) positive relationship between seedling dry weights at all root-zone temperatures and those from the field test suggest that strains with vigorous seedling growth in the field could be identified using low root-zone temperature regimes.Key words: Zea mays, root-zone temperature, cold tolerance


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


Sign in / Sign up

Export Citation Format

Share Document