scholarly journals Photosynthetic Responses of Creeping Bentgrass to Reduced Root-zone Temperatures at Supraoptimal Air Temperature

2002 ◽  
Vol 127 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Qingzhang Xu ◽  
Bingru Huang ◽  
Zhaolong Wang

High air and soil temperatures are major factors limiting growth of cool-season grasses. A previous study by the authors reported that a soil temperature reduction of only 3 °C when air temperature was maintained at 35 °C significantly improved shoot and root growth of creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds.) Farw. (syn. A. palustris Huds.)]. This study was designed to investigate the responses of photosynthetic activities of creeping bentgrass to lowered root-zone temperatures from the supraoptimal level when shoots were exposed to high air temperature. Two cultivars of creeping bentgrass, `L-93' and `Penncross', were exposed to the following air/root-zone temperature regimes in growth chambers and water baths: 1) optimal air and soil temperatures (20/20 °C, control); 2) lowering soil temperature by 3, 6, and 11 °C from 35 °C at high air temperatures (35/32, 35/29, and 35/24 °C); and 3) high air and soil temperatures (35/35 °C). Soil temperature was reduced from 35 °C by circulating cool water (18 °C) in water baths at variable flow rates. Both cultivars had similar responses to high or low root-zone temperatures with high air temperature. High air and root-zone temperatures caused significant reductions in canopy photosynthetic rate (Pcanopy), single-leaf photosynthetic rate (Pleaf), leaf chlorophyll content, photochemical efficiency (Fv/Fm), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, beginning on day 1 of high air and soil temperature stress for Pcanopy and Pleaf, and day 7 for chlorophyll content, Fv/Fm, and Rubisco activity. The 3 °C reduction in root-zone temperature at high air temperature had no effect on those photosynthetic parameters, except chlorophyll content. Reducing root-zone temperature by 6 °C or 11 °C while maintaining air temperature at 35 °C significantly improved Pcanopy, Poleaf, leaf chlorophyll content, Fv/Fm, and Rubisco activity. Single leaf photosynthetic rate at 35/24 °C was not different from the control level, but Pcanopy at 35/24 °C was lower than the control level. A reduction in root-zone temperature enhanced canopy and single-leaf photosynthetic capacity even though shoots were exposed to supraoptimal air temperature, which could contribute to improved turfgrass growth.

1970 ◽  
Vol 50 (4) ◽  
pp. 401-409 ◽  
Author(s):  
HERMAN A. HAMILTON

The response of timothy in monoculture and m association with each of alfalfa and birdsfoot trefoil was studied when root zone temperatures of 10, 18.3 and 26.7 C were imposed on a soil receiving N at 0 and 100 pp2m of soil in all possible combinations with K at 0 and 166 pp2m of soil. The different plant associations resulted in highly significant differences in yields, irrespective of soil temperature or nitrogen addition, but only at 10 C was there a significant interaction between K and the plant associations. The legumes associated with timothy had a significant effect on timothy yield at all temperatures, and the behavior of the different legumes was in turn differently affected by fertilizer nutrients as well as by different temperatures. Shoot to root ratios of timothy tended to be greater when associated with trefoil than with alfalfa at all soil temperatures. The effect of soil temperature and fertilizer varied for alfalfa vs. trefoil when either was grown with timothy.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1160b-1160
Author(s):  
Khin San Wai ◽  
S.E. Newman

The response of Antirrhinum majus (snapdragon) cultivars (`Tampicoi' and `Rainier White') to night air temperatures (10C and 20C) and elevated root-zone temperature (26C and ambient) was studied. Height of plants grown with a heated root-zone were greater, compared to unheated at both night temperatures for both cultivars. Shoot dry weight of `Tampico' plants was reduced by heated root-zone temperature at 20C night air temperature. Raceme length was greater with heated root-zone temperature compared to unheated at 10C night air temperature. Days to flower were shorter with heated compared to unheated root-zone at both night air temperatures for both cultivars. Stomatal diffusive resistance was greater on plants with unheated compared to heated root-zone temperature at 10C night air temperature for `Rainier White'.


1992 ◽  
Vol 117 (1) ◽  
pp. 154-157 ◽  
Author(s):  
John M. Ruter ◽  
Dewayne L. Ingram

Plants of `Rotundifolia' holly (Ilex crenata Thunb.) were grown for 3 weeks with root zones at 30,34,38, or 42C for 6 hours daily to evaluate the effects of supraoptimal root-zone temperatures on various photosynthetic processes. After 3 weeks, photosynthesis of plants grown with root zones at 38 or 42C was below that of plants grown at 30 or 34C. Chlorophyll and carotenoid levels decreased while leaf soluble protein levels increased as root-zone temperature increased. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity per unit protein and per unit chlorophyll responded quadratically, while RuBisCO activity per unit fresh weight increased linearly in response to increasing root-zone temperature. Results of this study suggest that `Rotundifolia' holly was capable of altering metabolism or redistributing available assimilates to maintain CO2 assimilation rates in response to increasing root-zone temperatures.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laura Carotti ◽  
Luuk Graamans ◽  
Federico Puksic ◽  
Michele Butturini ◽  
Esther Meinen ◽  
...  

This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 μmol m–2 s–1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 μmol m–2 s–1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 μmol m–2 s–1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 μmol m–2 s–1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 μmol m–2 s–1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 μmol m–2 s–1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the “optimal” PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.


1987 ◽  
Vol 5 (2) ◽  
pp. 93-96
Author(s):  
Steven E. Newman ◽  
Fred T. Davies

High root-zone temperatures can stress plants and reduce nursery productivity of container-grown crops. Predawn shoot water potential was initially increased (less water strain) by root-zone temperatures from 40° to 45°C (104° to 113 °F) and then subsequently declined after 3 days. Stomatal conductance (SC) was reduced at similar root-zone temperatures. Hydraulic root conductance (Lp) increased linearly in response to increasing root-zone temperatures for high temperature tolerant species, and quadratically for susceptible species. Endomycorrhizal fungi colonization enhanced high root-zone temperature stress tolerance at moderate temperatures from 35 ° to 40°C (95 ° to 104°F).


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1607-1610
Author(s):  
W.R. Okie ◽  
A.P. Nyczepir

Roots of dormant peach trees can grow when soil temperatures are >7 °C, which commonly occurs in the southeastern U.S. during the winter. In our tests, root growth on 1-year-old nursery trees was minimal at 7 °C, and increased with temperature up to at least 16 °C, but rootstocks varied greatly in their regeneration at a given temperature. Trees on seedling rootstocks of `Guardian™', `Halford' and `Lovell' regenerated roots more slowly than those on `Nemaguard' at soil temperatures >7 °C. The regeneration rates mirrored the relative susceptibility of these rootstocks to peach tree short life syndrome in the southeastern U.S., which is associated with parasitism by ring nematode.


HortScience ◽  
1991 ◽  
Vol 26 (6) ◽  
pp. 771C-771
Author(s):  
John M. Ruter ◽  
Dewayne L. Ingram

High root-zone temperatures have been shown to affect photosynthate partitioning, respiration, nitrogen nutrition and growth of `Rotundifolia' holly. The loss of chlorophyll and protein in shoots of other plants in response to high root-zone temperatures has been documented. Therefore, the objectives of this research were to look at the effects of supraoptimal root-zone temperatures on RUBISCO activity, leaf protein and photosynthetic pigment levels. Soluble protein levels in leaves increased linearly as root-zone temperature increased from 30 to 42 C. RUBISCO activity per unit protein and per unit chlorophyll responded quadratically to root-zone temperatures. Total chlorophyll, chlorophyll a & b, and carotenoid levels decreased linearly with increasing root-zone temperature. It is possible that `Rotundifolia' holly was capable of redistributing nitrogen to maintain RUBISCO activity for photosynthesis.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 688b-688
Author(s):  
Yong-Zhan Ma ◽  
Martin P.N. Gent

Tomato (Lycopersicon esculentum Mill) seedlings were grown with air temperature of 28°C light/12°C dark (12/12 hours), and either a constant, 20°C, root-zone temperature (RZT), or in-phase with air temperature, 28°C in the light and 12°C in the dark, or out-of-phase, 12°C in the light and 28°C in the dark. These treatments were applied from 17 to 25 days after germination, with 200 m \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} in flowing nutrient solution. The relative growth rate of leaves was the greatest with constant RZT, 0.33/d, and least with out-of-phase RZT, 0.29/d. The concentration of free amino acid and protein in leaves was least for out-of-phase RZT. The \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration in leaves was the highest in the dark, intermediate in the middle of the light period, and the lowest at the end of the light period. In roots, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration showed a similar trend. This variation was greatest when RZT was varied out of phase, and least with constant RZT. At the end of the light period, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} concentration in roots was 246, 180, and 162 μmol·g–1 dry weight for constant, in phase, and out of phase RZT, respectively. In the light, leaves of seedlings grown with out-of-phase RZT had 5 mmol·g–1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document}, compared to 16 mmol·g–1 with in-phase RZT Availability of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{-}^{3}\) \end{document} in the light may be the factor limiting plant growth with out-of-phase RZT. This research was supported in part by grant number 93-37100-9101 from the National Research Initiative Competitive Grants Program/USDA.


1966 ◽  
Vol 46 (3) ◽  
pp. 291-298 ◽  
Author(s):  
D. H. Heinrichs ◽  
K. F. Nielsen

Twenty alfalfa varieties, representing a broad cross-section of alfalfas from different climatic zones, were grown in a greenhouse at soil temperatures of 5°, 12°, 19°, and 27 °C to determine the effect of root zone temperatures on herbage and root growth. The air temperature varied between 15° and 32 °C. The photoperiod was extended to 16 hours by supplemental lighting. There were marked varietal differences in root development at different soil temperatures. Varieties of Medicago sativa generally yielded more herbage and roots than those of Medicago falcata. However, varieties of M. falcata produced the most herbage per weight of roots. Growth of alfalfa was greatly affected by root zone temperature; the most herbage was produced at 27 °C and the most root and nodular tissue at 12 °C. Soil temperature affected the shape and color of nodular tissue. Nitrogen and phosphorus increased in herbage as the root zone temperature increased, with P increasing more than N. Time to reach the flowering stage was not appreciably affected by root zone temperature.


Sign in / Sign up

Export Citation Format

Share Document