Effects of partial root drying on strawberry fruit

2019 ◽  
Vol 84 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Kai Zhang ◽  
◽  
Zhengrong Dai ◽  
Wei Wang ◽  
Zhechao Dou ◽  
...  
HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 539f-539
Author(s):  
Kirk W. Pomper ◽  
Patrick J. Breen

Invertase (INV) may influence sugar levels and assimilate transport in strawberry fruit. Several groups, including our own, have only detected acid INV (optimum pH 4.6) in strawberry fruit, however, recently Hubbard et al. (Physiol. Plant. 82:191-196, 1991) reported the presence of a neutral INV (pH 7.5). Since dissimilar isolation protocols may have contributed to the different findings, we re-examined our work with developing `Brighton' strawberry using the extraction procedure of Hubbard et al. Neutral INV activity per gFW (pH 7.5-8.0) increased many fold as fruit developed from green to the red ripe stage. Acid INV activity decreased markedly from green-white to the red stage. In addition, when fruit extracts were precipitated with cold acetone, a pellet contained 60% of the acid INV activity, and a surface coagulation of protein contained 60% of the neutral INV activity. This allowed easy separation of these two enzymes. Extraction methodologies affect isolation of neutral INV activity from strawberry fruit.


2020 ◽  
Vol 71 (22) ◽  
pp. 6865-6868
Author(s):  
David A Brummell

This article comments on: Paniagua C, Ric-Varas P, Garcia-Gago JA, López-Casado G, Blanco-Portales R, Muñoz-Blanco J, Schückel J, Knox JP, Matas AJ, Quesada MA, Posé S, Mercado JA. 2020. Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of Experimental Botany 71, 7103–7117.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Yunduan Li ◽  
Yuanyuan Zhang ◽  
Xincheng Liu ◽  
Yuwei Xiao ◽  
Zuying Zhang ◽  
...  

Volatile compounds principally contribute to flavor of strawberry (Fragaria × ananassa) fruit. Besides to genetics, cultivation conditions play an important role in fruit volatile formation. Compared to soil culture as control, effects of substrate culture on volatile compounds of two strawberry cultivars (‘Amaou’ and ‘Yuexin’) were investigated. GC-MS analysis revealed significant difference in volatile contents of ‘Amaou’ strawberry caused by substrate culture. No significant effect was observed for cultivar ‘Yuexin’. For ‘Amaou’ strawberry from soil culture produced higher volatile contents compared with substrate culture. This difference is contributed by high contents of esters, lactones, ketones, aldehydes, terpenes, hydrocarbons, acids, furans and phenols in ‘Amaou’ strawberry fruit from soil culture. Furanones, beta-linalool, trans-Nerolidol and esters are major contributor to strawberry aroma, whose contents are higher in soil culture planted fruit when compared to substrate culture. Moreover, strawberry fruit from soil culture had higher transcripts related to volatile biosynthesis were observed, including FaQR, FaOMT, FaNES1, FaSAAT and FaAAT2.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingfei Cheng ◽  
Qingfeng Niu ◽  
Bo Zhang ◽  
Kunsong Chen ◽  
Ruihua Yang ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Ricardo I. Castro ◽  
Ana Gonzalez-Feliu ◽  
Felipe Valenzuela-Riffo ◽  
Carolina Parra-Palma ◽  
Luis Morales-Quintana

Sign in / Sign up

Export Citation Format

Share Document