scholarly journals Cell Type Specific Gene Interaction between Microbiota and Antidepressant Drugs

Author(s):  
Chutian Guo ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jinting Guan ◽  
Yiping Lin ◽  
Yang Wang ◽  
Junchao Gao ◽  
Guoli Ji

Abstract Background Genome-wide association studies have identified genetic variants associated with the risk of brain-related diseases, such as neurological and psychiatric disorders, while the causal variants and the specific vulnerable cell types are often needed to be studied. Many disease-associated genes are expressed in multiple cell types of human brains, while the pathologic variants affect primarily specific cell types. We hypothesize a model in which what determines the manifestation of a disease in a cell type is the presence of disease module comprised of disease-associated genes, instead of individual genes. Therefore, it is essential to identify the presence/absence of disease gene modules in cells. Methods To characterize the cell type-specificity of brain-related diseases, we construct human brain cell type-specific gene interaction networks integrating human brain nucleus gene expression data with a referenced tissue-specific gene interaction network. Then from the cell type-specific gene interaction networks, we identify significant cell type-specific disease gene modules by performing statistical tests. Results Between neurons and glia cells, the constructed cell type-specific gene networks and their gene functions are distinct. Then we identify cell type-specific disease gene modules associated with autism spectrum disorder and find that different gene modules are formed and distinct gene functions may be dysregulated in different cells. We also study the similarity and dissimilarity in cell type-specific disease gene modules among autism spectrum disorder, schizophrenia and bipolar disorder. The functions of neurons-specific disease gene modules are associated with synapse for all three diseases, while those in glia cells are different. To facilitate the use of our method, we develop an R package, CtsDGM, for the identification of cell type-specific disease gene modules. Conclusions The results support our hypothesis that a disease manifests itself in a cell type through forming a statistically significant disease gene module. The identification of cell type-specific disease gene modules can promote the development of more targeted biomarkers and treatments for the disease. Our method can be applied for depicting the cell type heterogeneity of a given disease, and also for studying the similarity and dissimilarity between different disorders, providing new insights into the molecular mechanisms underlying the pathogenesis and progression of diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


2021 ◽  
Author(s):  
Dionnet L Bhatti ◽  
Lucian Medrihan ◽  
Michelle X Chen ◽  
Junghee Jin ◽  
Kathryn McCabe ◽  
...  

BACKGROUND: Behavioral responses to stress are, in part, mediated by the hippocampus and Parvalbumin (PV)-expressing neurons. However, whether chronic stress induces molecular and cellular adaptations in hippocampal PV neurons contribute to stress-induced behavioral outcomes remains elusive. METHOD: Using chronic social defeat stress (CSDS), we investigated the role of neuronal activity and gene expression in hippocampal PV neurons in mediating stress-resilience and -susceptibility. We first used in vivo high-density silicon probe recordings and chemogenetics to test whether the activity of PV neurons in ventral dentate gyrus (PVvDG) is associated with particular behavioral outcomes. To find critical molecular pathways associated with stress-resilience and -susceptibility, we used PV-neuron-selective translating ribosome affinity purification and RNAseq. We used immunoblotting, RNAscope, and region- or cell type-specific gene deletion to determine whether Ahnak, a molecule regulating depression-like behavior, was necessary for behavioral divergence after CSDS. RESULTS: We find CSDS modulates neuronal activity in vDG. Notably, stress-susceptibility is associated with an increase of PVvDG firing, which we find is necessary and sufficient for susceptibility. Additionally, genes involved in mitochondrial function, protein synthesis and synaptogenesis are differentially expressed in hippocampal PV neurons of stress-resilient and -susceptible mice. Interestingly, protein and mRNA levels of Ahnak, an endogenous regulator of L-type calcium channels are associated with susceptibility after CSDS. vDG- and PV cell type-specific deletions reveal that Ahnak is required for stress-susceptibility to CSDS. CONCLUSIONS: These findings indicate that CSDS-induced molecular and cellular adaptations in hippocampal PV neurons mediate behavioral consequences, proposing a mechanism underlying individual differences in stress vulnerability.


Sign in / Sign up

Export Citation Format

Share Document